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At the request of the Defense Nuclear Agency, Oak 
Ridge National Laboratory has undertaken the prepara- 
tion of a handbook t o  aid engineers charged with the 
responsibility of designing shields to protect military 
equipment and personnel in the vicinity of a nuclear 
weapons burst. Thus far, six chapters have been issued: 
Chapter 2,  “Basic Concepts of Radiation Shielding 
Analysis”; Chapter 3 ,  “Methods for Calculating Neu- 
tron and Gamma-Ray Attenuation”; Chapter 4, “Neu- 
tron and Gamma-Ray Albedos”; Chapter 5,  “Methods 
for Calculating Effects of Ducts, Access Ways, and 
Holes in Shields”; Chapter 6, “Methods for Predicting 
Radiation Fields Produced by Nuclear Weapons”; and 
Chapter 7, “Engineering Method for Designing Initial 
Radiation Shields for Blast-Hardened Underground 
Structures.” Other chapters in preparation are an 
introductory first chapter and Chapter 8, “Engineering 
Method for Designing Initial Radiation Shields for 
Aboveground Structures.” Additional chapters are 
under consideration, in particular a chapter to present 
an engineering method for calculating dose rates, as 
opposed to total doses, bu t  no definite plans to prepare 
such chapters have yet been made. Also, at least for the 
present, the plan to  combine the chapters into volumes 
has been abandoned. 

This document is a first revision of Chapter 3, which 
was originally issued in 1967. Since that  date  i t  has 
become apparent that Chapter 3 is being used both as a 
text and as a frequent reference in a number of colleges 
and universities, and in view of the recent rapid 
advances in adapting the various transport methods to 
deep-penetration shielding problems, plus the tendency 
of many designers to apply the methods directly, the 
authors and editors deemed it essential that the chapter 
be updated and expanded. Since this revision was 
undertaken immediately following the preparation of 
Chapter 2, the two chapters are uniquely compatible 
and complimentary as shielding texts. 

In order to prepare this and other chapters of the 
Handbook, it has been necessary for Oak Ridge 
National Laboratory to  obtain the assistance of several 
consultants and subcontractors. For this chapter on 
attenuation, Paul N. Stevens, a consultant from the 

University of Tennessee, together with David K. Trubey 
of the Laboratory prepared the first draft with which 
the editors worked. Other chapters similarly represent a 
cooperative effort of ORNL staff members and those of 
other organizations. 

Although this revision of Chapter 3 was made wholly 
by the authors and editors, the character of the chapter 
has been retained and thus we remain indebted to the 
many individuals who by their extensive reviews con- 
tributed to the original version. In particular, we wish to 
acknowledge the help given by F .  R. Mynatt, formerly 
of the Oak Ridge Computing Technology Center and 
now of the Laboratory, who was largely responsible for 
the original version of Section 3.3. In addition, several 
persons at the Laboratory served as on-the-spot au- 
thorities to help resolve problem areas as they arose. 
For this type of help we are especially grateful to  F. H. 
Clark and P. H. Pitkanen, who reviewed the section on 
the moments method (Section 3.4), to Clark and V. R. 
Cain, who contributed to the section on the Monte 
Carlo method (Section 3 . 9 ,  and to R. R. Coveyou, who 
reviewed the section on the invariant imbedding tech- 
niques (Section 3.7). We are also indebted to Mrs. Betty 
F. Maskewitz and her associates for providing the 
information on the computer code abstracts, both in 
the original version and in this revised version. 

Appreciation is also expressed to Maj. 1;. A. Verser 
and to  Lt. Cols. Charles D. Daniel and William A. 
Alfonte, who as past DNA Shielding Project Officers 
handled the early administration of the contract and 
assisted in establishing the scope of the Handbook. 
The work they began was continued until recently by 
Maj. R. W. Enz, who gave invaluable advice and 
assistance that aided the publication of these first six 
chapters. Capt. Dean Kaul is now serving as the project 
officer and will oversee the forthcoming chapters. 

Finally, we wish to thank Mrs. Virginia M .  Hamrick, 
who assisted in the editing of the first version of the 
chapter, and Mrs. Virginia Glidewell, who for this 
second version typed and helped proofread the many 
drafts which are always necessary precursors to such a 
publica ti on. 
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3.0. Introduction 

The design of shields for protection against the 
neutrons and gamma rays given off by a weapons burst 
or an operating reactor requires a detailed knowledge of 
the behavior of the radiation transported through the 
attenuating media. Numerical and, in some cases, 
analytical solutions of radiation transport problems can 
be obtained by one of several calculational techniques. 
Selection of the proper technique for a specific shield 
design problem is usually governed by the type of 
problem to  be solved, the degree of accuracy required, 
and of course the costs involved. The purpose of this 
chapter of the Handbook is to help the shield designer 
choose the best method by providing him with reason- 
ably simplified and generalized descriptions of the more 
commonly used techniques. As a further aid, summaries 
of digital computer programs which solve shielding 
problems by the various techniques are presented in an 
appendix, and other apperdixes include basic data and 
functions of general utility. 

The calculational methods covered here are those of 
spherical harmonics, discrete ordinates, moments, 
Monte Carlo, diffusion theory, invariant imbedding, and 
kernels, plus a method which combines a removal 
kernel with diffusion theory. Except for the invariant 
imbedding method, all these techniques are either 
approximate solutions to the well-known Boltzmann 
equation or are based on kernels obtained from 
solutions to the equation.* The Boltzmann equation, 
which is discussed in Section 3.1, is a precise mathe- 
matical description of the general behavior of un- 
charged radiation particles in terms of position, energy, 
direction, and time. 

In  the application of  the methods to radiation 
shielding calculations, both neutrons and gamma rays 
are considered to be neutral particles that‘move in 
straight lines until they interact with an atom. These 
interactions result in either the scattering or the 
absorption of the incident particle. In a scattering 
interaction the incident particle is deflected in direction 
and degraded in energy, while in an absorption it 

~~~ ~ 

*Kernels may also be obtained from experiments. 

effectively disappears, both processes thereby de- 
creasing the number and energies of the particles 
penetrating the shield. (An exception is the fission 
reaction, usually classified as an absorption, but this 
process is not normally of interest in shield design.) 

Most of the calculational methods presented in this 
chapter would in principle apply equally well to both 
gamma rays and neutrons. However, the differences in 
their interaction mechanisms as exemplified by their 
cross sections lead to many real differences in the 
implemented solutions. For example, gamma-ray cross 
sections are smooth functions of both the gamma-ray 
energy and the atomic number of the material. In 
contrast, neutron cross sections usually exhibit complex 
resonance structure, with the total and differential 
scattering cross sections varying irregularly with respect 
to energy and having little similahty for nuclides of 
nearly the same atomic number or atomic mass. Also, 
gamma-ray cross sections are relatively well known, 
whereas the neutron cross-section data are not complete 
in many regions of special interest to shield design. 
Most neutron cross-section work to date has been 
performed in support of reactor design, and because of 
this the work in the resonance energy regions has 
concentrated on neutron energies at which the cross 
sections are high rather than low, that is, on the peaks 
rather than the  valleys of a plot of the cross section as a 
function of energy. In shield design the valleys are of 
more interest since neutrons with energies corres- 
ponding to the valleys tend to dominate the penetration 
process. 

Another important difference between shielding 
calculations for gamma rsys and those for neutrons lies 
in the consideration of secondary radiations produced 
by the interactions of the primary particles. In the case 
of gamma rays the secondary particles (electrons, 
positrons, and low-energy photons) normally do  not 
create shielding problems and thus can be ignored. In 
the case of neutrons, however, the secondary particles 
may be the most important source, particularly if the 
neutron interactions are predominantly absorptions, 
which are always accompanied by the emission of either 
charged particles or “capture” gamma rays. While the 

1 
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charged particles can usually be neglected, the capture 
gamma rays are often highly penetrating, and the fact 
that they are born throughout the shield further 
complicates the situation. Neutron inelastic scatterings 
can also produce secondary gamma rays. 

The recognition of secondary gamma rays as a serious 
shielding problem has resulted in the development of 
techniques to  compute the neutron fluxes and the 
corresponding secondary gamma-ray fluxes simulta- 
neously. In particular, several computer codes based 
on the discrete ordinates and Monte Carlo methods 
have been designed to  solve the “coupled” problem. 

I 

With the availability of so many methods of varying 
sophistication, it is generally believed that shield de- 
signers now have the tools at hand for adaptation to  
most shielding problems. If this is indeed true, then the 
limiting factor in calculating the attenuation of neu- 
trons and gamma rays in shields is the availability and 
accuracy of the basic data, that is, the interaction cross 
sections and the radiation source distributions. Con- 
centrated efforts are currently underway to provide 
such data. 



3.1. The General Boltzmann Transport Equation and Its Adjoint 

The Boltzmann transport equation describes the 
general behavior of uncharged radiation particles (e.g., 
neutrons) or quanta of electromagnetic radiation (e.g., 
gamma rays) in terms of  seven-dimensional phase space 
( i ,E,a, t ) .  This phase space consists of three spatial 
coordinates. the particle energy, two direction-defining 
angles, and time. Knowledge of the radiation particle 
density over all phase space for some prescribed 
physical situation is in fact the complete solution to the 
transport problem. However, experience has shown that 
the particle flux, which is simply related to the particle 
density (particle flux = particle density X particle 
speed), is a more convenient variable for analysis. 
Accordingly, the angular flux. @ ( t E , n , t ) ,  is used as the 
dependent variable in the Boltzmann equation. 

When associated with differential phase space in 
energy and direction, the time-dependent angular flux 
can be interpreted as 

@(i,E,fi,t) d E d a  = the number of particles that cross 
a unit area normal to  the fi 
direction per unit time at  the 
space point 7 and time r with 
energies in dE about E and with 
directions that lie within the dif- 
ferential solid angle d f i  about the 
unit vector s2. 

This function is more properly called the particle flux 
density differential in energy and angle, * but the simple 
expression angular flux has become standard termi- 
nology. Integrating the angular flux over all directions 
yields the scalar flux, given by 

@(;,E, 1 )  = $ @(;,E, a. t )  d a  
4n 

and having units of particles cm-’ sec-’ MeV-’ . This 
scalar flux is sometimes referred to as the differential 
flux, since it is differential with respect to energy. A 

“See Chapter 2 for a detailed discussion of flux and other 
basic concepts. 
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second integration over some specified energy range will 
produce @(;), which is a total flux (particles cm-’ 
sec-’). 

The derivation of the general time-dependent integro- 
differential form of the Boltzmann transport equation 
can be regarded as a bookkeeping process that sets the 
net storage of particles within a differential element of 
phase space ( d r d E  d f i  d t )  equal to the particle gains 
minus particle losses in that element and leads to  the 
following familiar form: 

l a  
v a t  
-- @(tE,E,r) =S(r,E,f i , t)  

where 
- 
r = position variable, 

E = the particle’s kinetic energy, 

v = the particle’s speed corresponding 
to its kinetic energy E, 

52 = a unit vector which describes the 
particle’s direction of motion, 

- 

r = time variable, 

@(tE,fi ,r)  = the time-dependent angular flux, 

-- a @ c E , f i , t )  dE  d a  = net storage (gains minus 
v a t  losses) per unit volume and time 

at  the space point r a n d  time t of 
particles with energies in dE 
about E and with directions 
which lie in d a  about fi, 

S ( t E , a j )  dE d f i  = the gain due to source particles 
emitted per unit volume and time 
at the space point r a n d  time t 
with energies in dE about E and 
directions which lie in d f i  about 
sz. - 
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Zs6f?+E, 3i’+a) dE d a  = the differential scattering 
cross section which describes the 
probability that a particle with an 
initial energy E‘ and an initial 
direction a’ undergoes a scatter- 
ing collision at ; which places it 
into a direction that lies in d f i  
about fi with a new energy in dE 
about E, 

[ JjZSG,E’+E,fi’-%) @.(;,E’,a’,t) dE‘ d a ’ ]  dE d f i  = 
inscattering gain per unit volume 
and time at the space p o i n t r a n d  
time t of particles with energies 
in dE about E and directions 
which lie in d f i  about a, 

0.a @(tE ,a , t )  dE d f i  = net convective loss* per unit 
volume and time at the space 
point r and time t of particles 
with energies in dE about E and 
directions which lie in d f i  about 
a, 

Ct(<E) = the total cross section at the 
space point r for particles of 
energy E ,  

Z,(EE) @ ( t E , a , t )  dE d B  = collision loss per unit 
volume and time at the space 
point r and time t of particles 
with energies in dE about E and 
directions which lie in d f i  about 
a. 

- 

- 

One of its more familiar and useful forms is for the 
time-independent problem, given by 

*The form of the net convective loss term,V.E @(XE,n,t), is 
less obvious than the other terms which comprise the Boltz- 
mann equation. The derivation of this term involves formulating 
the net outflow (loss) of particles having phase space coordi- 
nates (xE,z , t )  across the surface of the dlfferential volume d< 

&;E, E, t).dh. lSurface of d; 

The desired form is obtained by transforming the above surface 
integral into an equivalent volume integral. This is accomplished 
by application of the “divergence theorem”: 

_ _  - - - -  - 
lsurface of dr J(r,E, n, t W s  = .fdFV.J(r,E, n,t) dr . 

Evaluation of the volume integral over the differential phase 
space d; yields V . ~ ( ~ E , ~ t )  d; and oya  per-unit volume basis 
the net convective term becomes V.J(r,E,n,t), which can be 
rewritten in terms of the angular flux asV.6 @G,E,E,t). 

where the storage term is identically zero and the phase 
space is six-dimensional (FE,fi) .  This form is the basis 
for solution of steady-state radiation shielding problems 
such as determining the biological shield associated with 
a nuclear reactor operating at constant power. 

The solution of the transport equation represents the 
average value of the particle flux or particle density. In 
real systems, there will be fluctuations from the 
average; in some cases these fluctuations will be 
important, but, in general, they will not have a bearing 
on the validity of the equation predicting the expected 
value. 

Methods of solving the transport equation are inher- 
ently complex due to its integrodifferential form, and 
exact solutions are limited to  a few highly specialized 
problems. The most practical techniques are approxi- 
mate and essentially numerical in nature, the more 
familiar ones being the spherical harmonics method, the 
discrete ordinates (S,) technique, and the moments 
method. It is interesting to note that diffusion theory 
actually corresponds to a low-order approximation of 
the transport equation (see Section 3.2). Also, integral 
forms of the transport equation may be regarded as the 
formal basis for the Monte Carlo method, the results of 
which can in principle be made to approach the exact 
solution. More complete descriptions of these and other 
approximate methods are presented in the following 
sections of this chapter. 

The integrodifferential equation which is adjoint to 
Eq. 3.1 is derived in Appendix 3A and can be written as 

_-- a @*&E,fi,t) - V-fi @*(tE,a , t )  
v at 

t Zt(xE) @*(;;E,a,t) = S*&E,a, t )  

+jjC,(r,E+l?,a+a’) @*kE’ ,a’ , t )  dE‘ da’  , (3.3) 

where 

@*CE,fi , t)  = the adjoint flux which has the interpre- 
tation of “value function,” a measure 
of the present and future contributions 
to  the effect of interest by a radiation 
particle leaving a collision at a point 
whose coordinates in phase space are 
(r,E,fi,t), if 
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S*(yE,E,r )  = the adjoint source term, is defined as 
the direct contribution to the effect of 
interest by a unit angular flux with 
phase space coordinates (;,E,fi,f).  

Consistent with the above interpretations of @* and S*, 
the effect of interest X (for example, flux density, 
current, absorption, heating, leakage, transmission, re- 
flection, and dose) is uniquely determined if either the 
forward or adjoint fluxes are known; that is 

01 

The adjoir7t jhtx does not correspond in the usual 
sense to a real physical quantity. Instead it is the flux 
associated with the adjoint equation when that equa- 
tion is interpreted as  describing the transport of 
hypothetical radiation particles, sometimes called 
“adjunctons.” The rationale of the concept of adjunc- 
tons follows a t  least in part from the similarity of the 
adjoint equation to the Boltzmann transport equation. 

The adjoint equation, which mathematically defines 
the characteristics of the adjunctons, has often been 
referred to as the “backward” equation because the 
niovenient of adjunctons is backward to that of real 
particles. That is, they originate a t  a point i n  phase 
space associated with the detector and move in the 
direction of phase space that corresponds to the real 
source. This behavior requires that in a collision the 
adjuncton gain energy, which contradicts the usual 
energy conservation principles unless prior to the 
collision the target nucleus has the kinetic energy it 

would have acquired in a real collision process with a 
particle which has the final energy of the adjuncton. 
This precludes the assignment of physical properties 
to the adjunctons that would resemble those of real 
part icles. 

The lack of physical properties is not a serious 
sliortconung since adjunctons are not useful as radiation 
particles per se. Rather, the adjoint flux which mathe- 
matically exists at some point in phase space has the 
precise interpretation of “value function.” 

The value function is used as an importance function 
to bias Monte Carlo analyses of the behavior of real 
particles (neutrons and gamma rays) (see Section 3.5). 
Calculation of the answer of interest through solu- 
tion of the adjoint problem avoids the difficulties 
associated with estimation of the flux at a point, 
provided, of course, that the source has a more 
agreeable (diffuse) configuration. Further, given a flux 
field, an equivalent source can be constructed to which 
an individual particle can contribute only once. The 
adjoint flux can be interpreted as the estimator of the 
effect of interest for these source neutrons and the 
forward and adjoint solutions are thus combined to 
achieve a desired result with possibly greater calcula- 
tional efficiency than would be possible by either 
method alone. 

The adjoint concept also provides a fundamental 
basis for perturbation analyses which if properly iniple- 
mented is a powerful tool in the study of small changes 
to a shield configuration. 

Since the adjoint equation is very similar to the usual 
Boltzmann transport equation, it is not surprising that 
methods developed to solve the latter will also apply to 
the former. For example, adjoint fluxes have been 
calculated using the techniques of diffusion theory, 
Monte Carlo, and “exact” transport theory. Conse- 
quently, there should be no serious practical or funda- 
mental difficulties in calculating the adjoint flux. 



3.2. Spherical Harmonics Method 

The method of “spherical harmonics” as applied to  
the solution of the Boltzmann transport equation (Eq. 
3.2) consists of representing the various angle-depend- 
ent terms as expansions of the spherical harmonics 
polynomials. These polynomials, commonly called asso- 
ciated spherical harmonics, are described, for example, 
by Weinberg and Wigner’ and are given by the 
following expressions: 

x = spatial variable in slab geometry, the 
direction of which is specified by the 
unit vector i, 

p = direction cosine with respect to  the x 
axis 
_ _  

= s2.i = cos 0 ,  

2 j m - 2 k  2k+m 
j [ ( j  + m>! ( j  - m)!] ‘ I 2  

( j  - m - k)! (m + k ) !  k!  ( j  - k)!  
Pjm(E)  = E (-1)k-m 

k 

where E is the unit vector which for this application 
corresponds to specifying the direction of the particle 
motion, and 0 and cp are the polar and azimuthal angles 
re spec t ivel y . 

Applying the spherical harmonics technique to the 
general transport problem is inherently complex and 
involves mathematical procedures and concepts beyond 
the scope of this handbook. However, a simplified and 
lucid illustration of the method can be shown for the 
case of a steady-state (no time dependence), one-speed 
(no energy dependence), one-dimensional (slab geome- 
try with azimuthal symmetry), homogeneous (constant 
system parameters) neutron transport problem. Consist- 
ent with these simplifications, the general Boltzmann 
transport equation as given by Eq. 3.2 can be written as 

P- a@(xd t c, @(x,p) = S(x,p) 
ax 

where 

@(x,p) = angular flux (neutron flux per unit /A) 

= 2n (a(x,E) , 

C, = total macroscopic cross section, 

Cs(p,p’)dp = a scattering cross section which de- 
scribes the probability that a neutron 
with an incident direction cosine p! will 
be scattered such that its emergent 
direction has a direction cosine in dp 
about p,  

Cs(n,a’) = the macroscopic differential scattering 
cross section, 

C,(n,n’) @(x,n) d f i  d n  = the number of neutrons 
which scatter from the differential solid 
angle df i ’  about a’ through an angle 
c0s-l s2.52’ into the differential solid 
angle d a  about 52, per unit volume and 
time, 

S(x,p) dp = source neutrons emitted with direction 
cosines in dp about p per unit volume 
and time. 

_ _  

The angle-dependent terms in Eq. 3.5 can each be 
represented as a series of spherical harmonics of the 
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first kind, the Legendre polynomials P,(p). These 
polynomials are the degenerate form of the associated 
spherical harmonics and are given by Eq. 3.4 when the 
index m is set equal to  zero; that is, 

The first few Legendre polynonials are 

P o ( P ) =  1 > 

. .  

Expanding the angular neutron flux in terms of these 
polynomials yields 

where 

aj (x)  = position-dependent Legendre coefficients 0’ = 
0,1,2 ....w) corresponding to the neutron flux 

In  general the Legendre coefficients have no  physical 
significance, except for Q0(x) and (x), which are 
related to the total flux @(x) and net current J(x)  in the 
following manner: 

3 
2 

= - J(x) . 
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The source term can also be expanded in terms of 
Legendre polynomials, yielding the expression 

m 

S ( X , l * )  = E q!4 > (3.7) 
j =  o 

where 

S,(x) = position-dependent Legendre coefficients 0’ = 
0,1,2, ...w) corresponding to  the source term 

The zeroth coefficient corresponds to  the isotropically 
emitting component of the source term, 

S(x) = total source term at x, 

and for an isotropic source the other coefficients 0’ = 
1,2,.,.m) are all zero. 

Since for most practical situations the differential 
scattering cross section depends only on the change in 
direction as denoted by po = R-R’, the series expansion 
for C,(R,E’) is made in terms of the Legendre 
polynomials Pi(po):  

m 

~ S ( 5 3 9 )  = E ViPi (P0)  7 (3.8) 
i= 0 

where 

qi = Legendre coefficients (i = 0,1,2, ...-) correspond- 
ing to the differential scattering cross section 

Again the low-order 0‘ = O,,l) coefficients can be related 
to  physical parameters of the problem. In particular, qo 
is the isotropic component of the differential scattering 
cross section and q 1  is related to  the average value of 
the cosine of the scattering angle: 

qo = - I+] 1 C.,(S2,fi2’) dPo 2 - 1  



E, = macroscopic scattering cross section 

3 
2 - 1  

771 = -  / + l  C s ( f i , f i f ) P o  dP0 

3 
4n = - E, Po , 

Eo =average value of the cosine of the scattering 
angle in the laboratory frame of reference 

The spherical harmonics form of the Boltzmann 
equation is obtained by introducing the above series 
representations for @(x,p), S(x,p), and zs(E,S2') into 
Eq. 3.5, multiplying each term by the Legendre 
polynomial P J p )  and integrating over all p (-1 to  t l ) .  
When Eqs. 3 .6 ,3 .7 ,  and 3.8 are substituted into Eq. 3.5 
and the orthogonality property of Legendre poly- 
nomials, 

2 
2rt+ 1 

i f j = n ,  -- - 

is used along with the addition theorem for Legendre 
polynomials,* 

and with the recursion relationship 

*The use of the addition theorem makes possible the 
evaluation of the inscattering-integral term containing 
xs(E,fif),  which is necessarily expanded in terms of Pi (p0)  
rather than Pi(p) .  
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the following set of coupled differential equations is 
obtained: 

for n = 0,1,2 ,... 00 . (3.9) 

This set of equations, which no longer involves the 
directional variables and therefore is more amenable to  
solution than Eq. 3.5, is called the second (or spherical 
harmonics component) form of the Boltzmann equa- 
tion by Weinberg and Wigner' and others. Solution of 
this set of equations can be accomplished by rather 
straightforward although sometimes complex tech- 
niques. 

Practical methods of solution require that the series 
[epresentation of @(x,p) be limited to  a finite number 
of terms, for example, to  (n t 1) terms; n is commonly 
called the truncation number, and the corresponding 
calculation is referred to as the P, approximation. 

For the P1 approximation, consider only the n = 0 
and n = I forms of Eq. 3.9. With n = 1 ,  Eq. 3.9 can be 
written as 

2 1 d 
- @1(x) = - - 2@0(x) . (3.10) 
3 3(C, - Po 2,) dx 

Then, identifying 

2 
3 
- @1 ( x )  = J(x) 

and 

2@0(x) = @(x) 

and introducing the "transport-corrected" diffusion 
coefficient 

Eq. 3.10 can be rewritten as 

d 
dx 

J(x) = - D - @(x) . 

(3.1 1) 

(3.12) 



Equation 3.12 is commonly referred to  as “Fick’s 
law.” , 

With n = 0, Eq. 3.9 becomes 

d 2  
dx 3 
- - @1(x) = - c, 2@&) + 2so(x) , 

which can be rewritten as 

(3.13) 

Equation 3.13 can be interpreted as a precise neutron 
balance on the one-dimensional phase space (x). The 
familiar “diffusion equation” is obtained by substitut- 
ing Eq. 3.12 into Eq. 3.13: 

The PI approximation is equivalent t o  diffusion 
theory (see Section 3.6) and involves only a linear 
representation of the angular flux, 
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This restricts its application to  situations wherein the 
neutron flux is nearly isotropic, a condition not 
characteristic of the penetrating components of 
neutrons that traverse a shield. I t  is noted that the PI 
approximation did not require isotropic scattering in 
the laboratory frame of reference (an assumption 
required in the derivation of Fick’s law). 

I n  a similar fashion, the accuracy of the spherical 
harmonics calculation is also influenced by the number 
of terms used to represent the differential scattering 
cross section. Only a few terms are necessary for nearly 
isotropic scattering, but a large number of terms are 
required for adequate treatment of anisotropic scatter- 
ing, and in the past this has limited the use of the 
spherical harmonics treatment. However, recent 
advances in cross-section technology and increased 
computer capacity have for all practical considerations 
removed this limitation. 

I t  has been shown’ that the accuracy of the spherical 
harmonics method is improved when the truncation 
number n is equal to or greater than 3. This is 
demonstrated in Table 3.1, in which the results ob- 
tained with PI, P,, P5, and P I  approximations are 
compared with those obtained from a rigorous calcula- 
tion by the Wiener-Hopf method for the well-known 

Table 3.1.  Comparison of Normalized Total Fluxes Obtained with Various P, Approximations and with a Rigorous 
Solution by the Wiener-Hopf Method‘ 

Tota l  Flux Scattering 
Wiener-Hopf Method (mfp) p 3  p j  5 

0.0 

0.1 

0 .2  

0.3 

0.4 

0.5 

0.6 

0.7 

0.8 

0.9 

1 .O 

2.0 

1.0000 

1.1732 

1.3464 

1.5196 

1.6928 

1.8660 

2.0392 

2.2124 

2.3856 

2.5589 

2.7321 

4.4641 

1.0000 

1.2094 

1.4123 

1 .bo99 

1.8031 

1.9927 

2.1794 

2.3637 

2.5460 

2.7267 

2.9060 

4.6623 

1 .0000 1 .0000 

1.2528 1.2263 

1.4389 1.4680 

1.6414 1.6664 

1.8365 1.8564 

2.0261 2.0417 

2.2241 2.2117 

2.3944 2.4045 

2.5749 2.5834 

2.7537 2.7613 

2.9312 2.9382 

4.6792 4.6853 

1 .oooo 
1.2608 

1.4714 

1.6685 

1.8587 

2.0443 

2.2271 

2.4077 

2.5868 

2.7652 

2.9419 

4.6902 
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Milne problem with spherically symmetric scattering and distributions in metal-hydrogenous reactor shields 
no absorption. These results indicate that the P3 approxi- yielded satisfactory estimates of neutron attenuation 
mation is a vast improvement over diffusion theory (PI  for reasonable amounts of computer time. Further, it 
approximation) and that computer implementation of was recognized by Lanning3 that for some design 
the P3 approximation is reasonable. problems the low-order approximations were suffi- 

ciently accurate. He successfully calculated the spatial 
distribution of the gamma-ray energy flux in one- 
dimensional slab geometry. 

Shure2 found that a multigroup P3 approach in one 
dimension for calculating spatial and spectral neutron 



3.3. The 

The discrete ordinates S,, method 
effecting a numerical solution of 
pendent linear Boltzmann transport 

Discrete Ordinates S,, Method* 

is a means of 
the energy-de- 
equation. The 

most recent versions of the method pernit  anisotro- 
pic scattering t o  be included, thus making it suitable 
for both neutron and gamma-ray deep-penetration 
calculations in a wide variety of shielding problems. 
Since the method is fundamentally formulated as a 
finite difference equation (rather than as finite dif- 
ferencing of an analytic approximation), a minimum 
number of limiting assumptions is required, and the 
solutions apparently approach the exact solution of 
the Boltzmann equation as the space, energy, and 
angle meshes approach differential size. The method 
can be applied without significant restrictions to the 
general core criticality problem, and it can be used 
for both homogeneous and laninated shields with a 
variety of source configurations, including surface- 
and volume-distributed sources. 

The original method of discrete ordinates is at-  
tributed to Wick4 and t o  Chandrasekhar.’ Early 
applications were linlited to  simple problems such as 
the transport of monoenergetic neutrons isotropically 
scattered in one-dimensional slabs. The fundamental 
assumption in the method was that the integral in 
the Boltzmann equation could be approximated by a 
Gaussian quadrature formula; consequently, functions 
involved in  t h e  integral  had  to be evaluated o n l y  a t  
the angles corresponding to the Gaussian zeros. Al- 
though this original discrete ordinates method could 
be extended to  anisotropic scattering, it was limited 
to  slab geometry. 

A discrete ordinates technique which could be ex- 
tended t o  spherical and cylindrical geometries was 
introduced by Carlson,6 and it is this method that is 
commonly referred to  as the discrete ordinates S,, 
method. The S,, technique serves as the basis for 
several widely used codes, such as the one-dinien- 

*The description of the discrete ordinates method which ap- 
peared in the first edition of this chapter was primarily the 
work of F. R. Mynatt of the Computing Technology Center, 
Oak Ridge, Tennessee. The revisions for this edition have been 
made by one of the chapter authors (P.N.S.). 

sional codes DTF 11,7 DTF IV,’ ANISN,9 and 
DSN” and the two-dimensional codes TDC“) and 

Other approaches that can also be classified as 
discrete ordinates methods are the direct numerical 
integration techniques employed by the NIOBE’ 
and BIGGI-3Pt computer programs, but these tech- 
niques have not been utilized to  a large extent for 
shielding problems in the United States. 

Early versions of the S,, method assumed that the 
angular flux varies with angle as connected line seg- 
ments in an even number of equally spaced angular 
increments. This representation, although reasonably 
accurate for homogeneous one-dimensional systems, 
was found to  be unsuitable for the general problem 
because it fails to  preserve optical reciprocity (i.e., 
the method consists of a nonsymmetric angular 
quadrature). Also, recursions involving many terms 
are required, and an extension of the method to  
multidimensional geometries is most difficult. These 
shortcomings are largely alleviated by the use of the 
“diamond difference” technique,’ which relates in 
a more general fashion the angular flux within each 
particular angular increment to  the endpoint values 
of the increment. With the diamond difference 
method the Boltzmann equation can be integrated 
over an angular increment, yielding, for the deriva- 
tive terms, a two-point difference equat ion involving 
the angular flux evaluated at the increment end- 
points. 

The linear Boltzmann equation of transport theory 
is not derived from first principles of physics but is 
a flow balance for a differential phase space cell, 
treating in a phenomenological manner the events 
causing an increase or a decrease in the number of 
particles contained in the cell. The discrete ordinates 
difference equations can be formulated in an equiva- 
lent manner but by considering a finite-difference 
cell - the way it is presented in most references. 
For some time it was not clear that the difference 
equations would in general approach the analytic 

DOT.’ 3 ’  * 

+See Appendix 3B. 
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form of the Boltzmann equation as the finite-dif- 
ference phase space cell approached differential size. 
Lathrop8 showed that they would for the one- 
dimensional geometries, and this is established im- 
plicitly in the following paragraphs in which the 
difference equations for spherical geometry are 
derived directly from the analytic Boltzmann equa- 
tion. Spherical geometry, although simple, serves to  
illustrate all the characteristics of the discrete ordi- 
nates equations except for discrete ray streaming, 
which occurs only in two- or three-dimensional geom- 
etry. 

Transport Equation and Phase Space Geometry. - 
In the following paragraphs the derivation of the 
discrete ordinates equations will be performed for 
the special case of spherically symmetric, spherical 
geometry and the steady-state condition. With only 
slight modification this derivation can be made to  
a p p l y  t o  other one-dimensional configurations, 
namely slab and infinite-cylinder geometries. The 
derivation also embodies the essential features of 
two-dimensional derivations while avoiding much of 
the complexity. However, i t  does not adequately 
reflect the unique complexities of the time-de- 
pendent discrete ordinates analysis. Therefore a deri- 
vation of the discrete ordinates equations for the 
time-dependent problem and a brief description of 
their use are presented in Appendix 3c. 

Phase space for this special case consists of three 
variables: the radius of the sphere ( r ) ,  the energy 
of the particle (E) ,  and the cosine of the angle of the 
particle direction relative to  the radius (p) .  A dif- 
ferential phase space cell is given by 

differential phase s p a c e  cell = d V d E  dp 

and the finite-difference cell is obtained by integrating 
Eq. 3.15 over any particular finite intervals of radius, 
energy and angle. It is given by 

finite-difference cell = VI AEG Ap,  

For the onedimensional spherical geometry problem, 
the following two analytic forms of the Boltzmann 
transport equation can be considered: 

x @(r ,E’ ,p’ )  dE’ dp’ , (3.16) 

and 

X @(r,E’ ,p’)  dE’ dp’ , (3.17) 
where 

@ ( r , E , p )  = the  angular flux, which can  be inter- 
preted a s  the particle track length 
per unit time per unit volume about r 
per unit energy about E and per unit 
direction cos ine  about p ,  

C t ( r ,  E )  = position- and energy-dependent mac- 
roscopic total  c r o s s  sect ion,  

c s ( r ,  E’ -t E ,  po)  dE dp = differential scat ter ing 
c r o s s  sec t ion  describing the proba- 
bility that  a particle with a n  initial 
energy E ’ and direction cos ine  p’ 
undergoes a col l is ion at r, resulting 
in a change of flight direction de- 

*The following subscript notation is used throughout this 
section: subscripts I, G, and D denote functions whose values 
are associated with the Ith space interval, Gth energy group, 
and Dth  angulx interval, respectively; i and i + 1 refer to a 
function evaluated at the lower and upper limits of the Ith 
space interval; g + 1 and g refer to  a function evaluated at the 
lower and upperknits of the Gth energy group; and d + 1 and d 
refer t o  a function evaluated at the lower and upper limits of 
the Dth angular interval. Therefore since the p-integration wifl 
be performed in the direction of decreasing p ,  i.e. pd + p d i l ,  
the interval ApD = p d + l  - pd will be negative. 
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R 

scribed by the  cos ine  of t h e  scat ter-  
ing angle  p,,, which p laces  i t  into 
a new direction which l i e s  in dp 
about p with a new energy in dE 
about E ,  

-- 
pLo = cosine of the scat ter ing angle  =!J.!J’, 

6,a’ = final and init ial  flight direction unit 
vectors respectively,  

S ( r , E , p )  = source particles per unit  time per 
unit volume about r per unit  energy 
about E and per unit  direction cos ine  
about p.  

Integration of both Eq. 3.16 and Eq. 3.17 would 
yield particle balance equations; however, the same 
would not be true for the numerical approxiination 
of Eq. 3.16. Equation 3.17 is called the “conserva- 
tive” form of the transport equation, and its inte- 
gration over any phase space volume results in inter- 
face terms, which may be identified as leakage terms 
that satisfy the divergence theorem exactly. As a 
consequence, the “conservative” equation (Eq. 3.1 7) 
is the preferred formal basis for numerical analyses. 

Derivation of Finite-Difference Equation. - The 
discrete ordinates difference equation is obtained by 
applying the following simple integral operator t o  
the transport equation (Eq. 3.17) in a manner con- 
sistent with the classical technique for obtaining dif- 
ference equations: 

integral  operator = 

x 477r2 dr dE dp . (3.18) 

T h i s  o p e r a t o r  i n t e g r a t e s *  each term of the t r a n s p o r t  
equation over t h e  difference cel l .  Application of 
t h e  operator to the  first  term of Eq. 3.17 gives  

d 

dr 
x - [ r2  @ ( r , E , p ) ]  4 n r 2  dr dE dp , 

which on rearranging becomes 

The integral of the flux over the energy group G may 
be identified as the group angular flux 

@ G ( ~ ’ F )  ~ E E A E ~  ‘ ( ‘ 9  E , p )  dE  J (3.20) 

in which case Eq. 3.1 9 becomes 

The volume integral in Eq. 3.2 1 can be modified and 
evaluated in  the following manner, 

(3 .22)  

where a,+, , G ( ~ )  = 1 ,  and @ j , G ( ~ )  = @ G ( r i , ~ ) .  
Substitution of Eq. 3.22 into Eq. 3.21 yields the 
fol!owing expression for the first term: 

It follows from the mean value theorem that any 
integral can be approximated by 

x f ( x )  d x  2 ?T f ( x )  A x ,  (3.24) 

1 

where Ax = x 2  - x1 and x, < X <x2 .  The parameter 3 
may be adjusted t o  give the equality; for well-behaved 
functions the closer X is to  the true mean, the better the 
approximation. Applying the mean value theorem to  
Eq. 3.23 to  evaluate the angular integrals results in 

*The integration limits a re  expressed symbollcally 
x -  ’ [ r 2  j E < n E G  @ ( ~ J ~ J V )  d E ]  dr dc( ’ (3’19) by x d ,  which implies a definite integral  with respect  ar to the variable x over the interval X. 



where @ i , ~ , D  E @i,G(GD) and PD is a mean value 
approximation for the direction cosine over the direc- 
tion increment A p D .  Identifying the surface areas of 
the volume increment by 

A i  = 4 7 ~ ~ ~  2 , A i t l  = 4 7 ~ ~ ; ~ ~  (3.25) 

yields the final form for the first  term: 

- A i  @ i , C , D )  * (3.26) 

The integral operator (Eq. 3.18) is next applied to  the 
second term in Eq. 3.17 and the result rearranged: 

@(r,E,p) dE ] dr dp . (3.27) 

Defining the group angular flux as before, Eq. 3.27 
becomes 

x @,(r,p>I dp (3.28) 

The integration qver p is accomplished according t o  the 
procedure suggested by Eq. 3.22 with the following 
result: 

T ,  = 4 n  JrEy (1 - clttl) ~ ~ , ~ + ~ ( r )  r dr 

- .frev (1 - p i )  @G,d(r )  r dr] . (3.29) 

The  remaining integration over the radius variable 
is performed by using the mean value approxima- 
tion (Eq. 3.24): 

I 

I 
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Equation 3.30 reduces to  a two-point difference in 
the angle index 

T 2  = BI ,d+l  @I ,G,d+i  - ' Z , d  @ I , G , d  
(3.31) 

if the curvature coefficient B I , d  is defined by the 
expression 

BI ,d  = 4 n r I  ArI(l - p:) . (3.32) 

Consistent with the conservation property of the 
technique, Eq. 3.30 or Eq. 3.31 gives an overall neutron 
balance. This is apparent since a summation of Eq. 3.30 
over (NOA) direction increments ApD yields 

[(I - 4 o A  + 1) @ I , G , N O A  + 1 - (1 - p i  @I,G, 1 I 

which, because p N o A  = -1 and p1 = +1, is identi- 
cally zero. 

Equation 3.32, which defines the curvature coeffi'- 
cients, can be recast in the form of a recursion relation 
which involves the coefficients Bl,d+ and BI ,d .  First, 
Bl,d is subtracted from Bl,d+ 1,  where B1.d and B I , d + ,  
are given by Eq. 3.32, yielding 

It is assumed that 
that is. that 

in Eq. 3.33 is the arithmetic mean, 

Then i t  follows that  

(3.34) 

Following similar arguments, the factor ( p i t l  - 
p i )  can  be expressed as 

- (1  - p:) @I,G,d ' I  ArJ > (3.30) 

where TI is a mean value within the spatial increment 
&I = ri+ - ri. 

Introducing Eqs.  3.34 and 3.35 into Eq. 3.33 yields  
the following recursion relation: 



The  final form for the recursion relation i s  obtained 
by introducing the  ce l l  a reas  A i + ,  and A i  ( s e e  
Eq. 3.25) and rearranging, with the result  that  

where B I , N O A  +, = B I , ,  = 0. Equation 3.37 is the form 
of the curvature coefficient found in the literature. The 
only approximation made in the preceding derivation is 
in the definition of mean values. 

When tlie integral operator, Eq. 3.18, is applied to the 
fifth term of Eq. 3.17 (which is called the inscattering 
integral), the result is 

x @(r, E ’ , p ’ )  dE’ dp’ 4 n r 2  dr dE dp . (3.38) 

The differential scattering cross section can be approxi- 
mated by a truncated Legendre polynonual expansion 
in tlie cosine of tlie scattering angle: 

l N  
= - Xfl(r, E’ + E )  Pn(po)  , (3.39) 
2 n=O 

where the Cn’s are Legendre coefficients of the 
expansion. 
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The Legendre polynomial P n ( p o )  can be expressed in 
terms of the initial and final direction cosines by the 
addition theorem for Legendre polynomials, which for 
spherically symmetric geometry is simply 

In adapting Eq. 3.38 to  a multigroup calculation, the 
integrals over all incident energies and all incident 
angles are replaced by sums of integrals over the primed 
phase space cell. Symbolically this is denoted by 

m N O G  

f ( E ‘ )  d E ‘ =  . f E , F ~ E  f ( E ‘ ) d E ’  , 
G ’  0 G ’ = l  

(3.41) 

/ .+I  N O A  . 

where NOG and N O A  signify the  number of energy 
groups and number of angular increments respec-  
t ively.  

Combining Eqs. 3.39 and 3.40 with Eq. 3.38, 
approximating the  incident energy and angle in- 
tegrals  by Eq. 3.41, and evaluat ing all remaining 
integrals by the mean value approximation yields  
(after considerable rearrangement of terms) the follow- 
ing forms for the inscattering integral: 

(3.42) 

where x;! 
s c o p i c  transfer coefficient), defined by 

i s  t h e  nth Legendre moment of the multigroup scat ter ing c ross  sec t ion  (multigroup macro- 
+G 

’r FV ’ E  E n E G  ’E ‘ E n E G ,  sn(f, E ’ -, E )  @(r, E ’, p ’) Pn(p  ’) dE’ dp’ rz  dr dE  

, (3.43) 
I cn.r = 

G ‘ G  - 



and I:, G' is the nth Legendre coefficient of the angular 
dependence of the flux, calculated from 

N O A  

i;,G/ = E Q1,Gf.D' pn ( F D ' )  APD' . (3.44) 
D = l  

Application of the integral operator (Eq. 3.18) t o  the 
removal term (third term) of Eq. 3.17 gives 

x @(r,E,p)  4m2 dr dE dp . (3.45) 

The evaluation of Eq. 3.45 requires some effort in 
order to  avoid the assumption of angleenergy separa- 
bility in the weighting of the multigroup cross sections. 
As the first step in evaluating Eq. 3.45 in terms of a 
cross section that is independent of angle, the energy 
integral of Eq. 3.45 is written as 

where 

R = correction factor that  is to  be deter- 
mined, 

c',(r) = flux-weighted group-G total  c ross  sec- 
tion defined by 

in which j'(r,E) is the zeroth Legendre coefficient of 
the angular dependence of the flux, which is identical 
to the differential flux @@,E). 

Rearrangement of Eq. 3.46 provides an explicit 
expression for R : 

which has only a small effect when the energy group 
structure is reasonably fine. 
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The correction factor R is determined by expressing 
the angular fluxes as truncated Legendre series and then 
combining the two terms which comprise Eq. 3.48. The 
truncated Legendre series representation of the flux is 

2 n + 1  

2 
Q(r,E,p) T - j"(r ,E) Pn@)  . (3.49) 

When Eq. 3.49 is subst i tuted into Eq. 3.48, the 
result is 

n= o 

2 n + 1  

2 
R =  C i ( r )  - i i  (r)  pn (p) 

n = o  

n = o  

which can be written as 

where 

and the moments of the c r o s s  sec t ion  are defined 
by 

Substitution of Eqs. 3.49 and 3.50 into Eq. 3.46 yields 
the final form for the energy integral: 

(3.52) 

Using this form for the energy integral i n  Eq. 
3.45, the remaining integrals  a r e  evaluated by the 



mean value approximation, yielding 

r 

(3.53) 

T h e  s e r i e s  in Eq. 3.53 i s  very similar in form to  
the inscattering integral  term ( T 5 )  and may be 
included there by replacing XnJ,‘ in Eq. 3.42 
with 

‘ n , l  ( m o d )  - - y , I  

G + G  

GI-,  G G’+ G 

+ (2n + 1) ( q G  - E& ) 6,,,’ , (3.54) 

where S,,,. = 1 if G’ = G and = 0 if G‘ # G .  The  
modified removal term then h a s  the desired form 

T 3  = V 1 A p D  x‘ I , G  ‘ l , C , D  ’ (3.55) 

Application of the integral operator to  the source 
term of Eq. 3.17 is straightforward since, with the 
exception of defining multigroup constants, the mean 
value approximation is used for all variables. The final 
result for a general fixed source is 

T 4  = ‘ 1  ‘ p D  ’ I , G , D  . (3.56) 

If multiplication i s  present  (eigenvalue problem) , 
1 

@,m4 = - x ( E )  
kerf 

x l o m  u x f ( r ,  E ’ )  jo(r, E’) dE’ , (3.57) 

which gives  

where 

k e f f  = effective multiplication cons tan t  of the  

X I , G , =  macroscopic f i ss ion  c r o s s  sec t ion  a t  
. energy G’, within the spat ia l  interval V I ,  

v = number of neutrons per fission by neutrons 

system, 
f 

of energy G’, 
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x G  = f iss ion spectrum defined by 

x(E) d 

T h e  discrete  ordinates difference equation i s  ob- 
tained by substi tuting the  derived expressions for 
each  of the  five terms into Eq. 3.17 and then 
dividing through by A p D  . T h e  result  i s  

1, 

N N O G  

N O A  

Although derived f o r  spherical  geometry, that  i s ,  for 

Eq. 3.59 is the general discrete ordinates difference 
equation for the one-dimensional geometries. The 
equations for the other geometries are obtained from 
Eq. 3.59 with A i  = 1 .O and VI = Arf for a slab and with 
A i  = 2nrj and VI = n(rf+, - r f )  for a cylinder. 

Numerical Solution of the Discrete Ordinates Equa- 
tion. - Equation 3.59 contains discrete-flux variables 
having both centered and endpoint subscripts. This in 
effect increases the number of  unknowns such that an 
insufficient number of determining relations are avail- 
able for their solution. This difficulty can be resolved 
by relating the “centered” and “endpoint” fluxes in 
some consistent fashion. The diamond difference tech- 
nique is the most widely used method for this purpose 
and includes two relationships for the spatial variable, 

p > 0 , (3.60~) 



and 

+ Ai,. @ z , G , D  = (1 - A )  ,G,D z , G , D  ’ 

p < 0 , (3.60b) 

and a s ingle  expression for the angular variable, 

where A and B are constants which can be assigned 
values of the interval (‘/*,l). When A = B = ‘ j2 ,  Eqs. 
3 . 6 0 ~  and 3.60b are the same for all values of p and 
together with Eq. 3.61 are known as the “ordinary” 
diamond difference equations which can be rewritten 
as: 

- - 
@ i + I , G , D - * @ Z , G , D  - @ i , G , D >  P D > O ,  (3.62a) 

or 
or 

and 

(3.63) - 
*I,G,d+ 1 - ’@Z,G, D - @Z,G,d . 

These equations form the basis for most current 
computer solutions. For a spatial sweep when j i D  > 0, 
Eqs. 3.59, 3.62u, and 3.63 are combined to  provide the 
following explicit expression for the “centered” dis- 
crete ordinate flux, @I,G,D : 
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positive-negative oscillation of the calculated fluxes. To 
remedy this, the calculation may be modified by re- 
fining the space and/or angle mesh, which would 
necessarily increase the computational time. However, 
most problems are reasonably well behaved except 
possibly for a few points. For this condition, a tech- 
nique called “negative flux fix-up” could be employed. 
The troublesome fluxes are immediately recalculated 
using the “step” difference equations which always 
yield positive fluxes. 

If A = B = 1 in Eq. 3.60u, 3.60b, and 3.61, the step 
function relationship is obtained which equates the 
centered fluxes t o  the appropriate endpoint fluxes. The 
“step” difference equations are: 

and 

(3.66) 
- 

@Z,G,d+ 1 - @Z,G,D . 

An explicit expression for the centered flux, @zI,G,D is 
obtained for the p D  > 0 spatial mesh sweep by 
substituting Eqs. 3.65a and 3.66into Eq. 3.59, yielding 

where the source term S;,G,D includes the fixed source 
and all inscattering sources. For a typical spatial mesh 
sweep (iiD > 0), Eq. 3.64 would be used to  solve for 
the centered flux @ z , G , D .  Then the endpoint fluxes 

@‘~+I,G,D and @ z , G , d + i  would be calculated by Eqs. 
3.62a and 3.63 respectively. The next centered flux 
@I+ ,G,D is then calculated again using Eq. 3.64 and so 
on. If the flux is decreasing so rapidly that the centered 
flux @z,G,D is less than one-half of either previous 
endpoint flux @ i , G , D  or @ z , G , d ,  then the newly 
calculated endpoint flux, @ i + l , G , D  or @ I , G , d + l ,  will be 
negative. This phenomenon is called “diamond 
difference breakdown” and will result in a meaningless 

(3.64), 

1 - 
+ pBZ,d @I,G,d  + ‘ZS;,G,D PD A i  @i ,G,D 

(3.67) 

These difference equations would be solved by the same 
calculational sequence described earlier for the “ordi- 
nary” diamond difference equations. The step-function 
relationship is less accurate than the ordinary diamond 
difference scheme for the same mesh; however, it has 
the advantage of always giving positive fluxes for 



n 

n 

positive sources and is used for the correction of 
negative fluxes, which occasionally occur with other 
diamond difference schemes. 

The choice of the discrete directions plays an 
important role in the discrete ordinates or S,, 
method. It does not appear that a most accurate (or 
best) quadrature scheme for a specific problem can 
be selected a priori. The efficiency of a given set of 
discrete directions (quadrature set) depends on prob- 
lem parameters such as geometry, optical thickness, 
energy group structure, spatial mesh size, etc., and a 
generalization of these dependencies is not possible. 

The discrete directions and associated weights 
(which represent solid angle) define the quadrature 
used in the inscattering integral; the directions define 
the mean values for the angles, such as cDt, and 
thus affect the approximations in the convection 
term. In all S,, codes, the discrete directions are 
represented as points on the surface of a unit sphere 
located at the point in space for which the flux is to  be 
defined and oriented in a fixed manner with respect to 
the coordinate system. The points or directions are 
located on the sphere in a reflective manner with 
respect to the three planes defining an octant such that 
the point description of one octant defines the whole 
sphere. This is not an absolute necessity but is usually 
required because of reflecting boundaries. 

The more recent S,, codes allow specification of 
direction weights as well as the directions them- 
selves. Carlson et al.” developed a rather elegant 
method of areas which computes directions and direc- 
tion weights that are symmetric with respect to  
rotational interchange of the axes of the unit sphere. 
Although the directions and weights in the area method 
are somewhat adjustable, the best results occur with 
the recommended values, which satisfy various approxi- 
mate moment conditions and asymptotic theories. 
The area method has the advantage of rotation sym- 
metry and the important advantage of all positive 
weights for any order of S,, . 

A l t h o u g h  r o t a t i o n  reflection symmetry has 
desirable qualities, only three-dimensional calculations 
would benefit from full symmetry; two-dimensional 
problems thus require twofold symmetry, and one- 
dimensional problems require no synunetry condi- 
tions within the octant. Thus for one- and two- 
dimensional geometries and especially for problems 
in which other conditions outweigh the symmetry 
considerations, some liberty in choosing directions 
may be exercised. 

Two commonly used angular segmentation methods, 
the Gauss-Legendre (P, - 1 )  method and the double 
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Gauss-Legendre (DP,,/, - 1 )  method are based on 
Gaussian quadrature. The directions for the P,, 
method are the n zeros of the Legendre polynomials of 
the first kind, 

and the directions for the DP,,/2-, quadrature are 
given by 

where the pj’s are the 17/2 zeros of - ( p j )  = 0. The 
directions defined by the DP,,/, -, method are charac- 
teristically more dense about p = 0 than those of the 

For one-dimensional plane and spherical geometry, 
experience has shown that the P,, - quadrature is well 
suited for deep-penetration problems. For thin shields 
involving isotropic plane or spherical shell sources, the 
double Gauss-Legendre quadrature is preferable. For 
specific problems, increased accuracy is usually ob- 
tained by using a higher-order Gaussian quadrature 
rather than by developing a special biased quadrature to  
exploit special characteristics of the problem. 

In two-dimensional geometries or one-dimensional 
cylindrical geometry less experience is available on 
which to  base the selection of the quadrature 
scheme. Good results have been obtained using 
qcadratures that are designed to  integrate specified 
orders of a spherical harmonic. In  this method the 
direction set is left to be specified, and is often 
based on Gaussian zeroes or complete symmetry 
requirements. For  specific problems increased ac- 
curacy is gained by using a proven quadrature to  a 
higher order rather than by developing special biased 
sets. I t  is usually more expensive to  develop and test 
a biased quadrature than to  use the standard quadra- 
ture with a higher order. 

A typical computer solution of the discrete ordi- 
nates problem is basically one of iterating the solu- 
tion t o  some prescribed degree of convergence. The 
sweep of the mesh points is carefully ordered to  
“follow” the neutrons (or gamma rays). For shield- 
ing problems, all particles undergoing scattering will 
always degrade in energy. Therefore, the calculation 
will begin with the highest energy group (G = 1) 
and progress sequentially through the lower energy 

method. 
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groups. The angular sweep is performed in the direc- 
tion of increasing D (decreasing ,TD) beginning with 
D = 1, which for most penetration problems cor- 
responds to  the most important direction. The 
spatial sweep begins at a boundary along which the 
inwardly directed flux values are specified and the 
sweep is made to  the other boundary and then 
repeated for the next angle. The spatial sweep for 
negative Do begins at the other boundary at which 
point the re-entrant fluxes are usually specified as 
zero and proceeds to  the source boundary. After 
progressing through all angles at one energy, the 
next lower energy group is treated in a similar man- 
ner and so on. 

In  solving Eq. 3.64 or Eq. 3.67 for the centered 
flux @I,G,D some of the required discrete ordinate 
fluxes have not yet been calculated; namely the 
“within group” scattering involves some as yet un- 
determined fluxes - those which correspond t o  
angles i i D i ,  where D’ Z D. Therefore the solution is 
obtained through the process of “inner iteration” 
whereby values for the unknown fluxes are taken as 
their previous iterate estimates. Details of the various 
iteration schemes and of the related convergence 
problem are omitted here but can be found in the 
descriptions of codes DTF IV,8 ANISN: and 
DOT.’ , 1 2  

Advantages and Disadvantages. - From the results 
of calculations made with S ,  codes, it appears that 
for shielding applications the discrete ordinates 
methods have the following advantages: 

1 . Depending somewhat on the sophistication 
desired, the S, calculations are easy to  prepare. 

2. The method is not stochastic, and flux errors at 
deep penetration are systematic rather than statis- 
tical. 

3 . Production problems having similar charac- 
teristics benefit from knowledge of fluxes calculated 
in a similar case. 

4. Secondary gamma rays may be calculated by 
the same method, either as a second calculation or 
simultaneously with the neutrons. The gamma-ray 
yield distribution may also be made a function of 
the energy of the captured neutron. 

5. The range of neutron energies from highest fis- 
sion energies to  thermal, including upscattering, may 
be calculated by the same method. 

6 .  The one-dimensional calculations are much 
faster (in computer time) than similar Monte Carlo 
calculations (see Section 3.5). In  two dimensions the 
type of problem and the desired answers determine 
whether S ,  or Monte Carlo is better. 

The following disadvantages are evident, but addi- 
tional development can alleviate or eliminate them: 

1. Convergence of the iterative method is not 
always uniform and well defined. The best method 
currently used is to  determine from each iteration 
the maximum error in the scalar flux at any point 
in space relative to  the previous iterate value. Itera- 
tions proceed until the error falls below a specified 
limit. 

2 .  Flux aberrations are frequently observed in two 
dimensions due to  localized sources and the propaga- 
tion of neutrons in discrete directions (the “ray” 
effect). 

3. No basic ground rules exist which define for a 
particular problem the best direction set, space 
mesh, multigroup structure, and polynomial expan- 
sion limit. 
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3.4. Moments Method 

n 

Another technique that can be used to solve the 
Boltzmann transport equation is the moments method. 
This method has some important advantages not shared 
by other methods, one being that foreknowledge about 
the behavior of the solution can be incorporated 
analytically in a very natural way, thereby often 
reducing the effort required to achieve a specific result 
and/or a desired accuracy. Another is that the type of 
recursion relation developed precludes a truncation at a 
crucial part of the calculation; that is, a finite number 
of moments may be calculated exactly (ignoring errors 
due to  the numerical solution) without considering the 
influence of higher moments. 

In a discussion of the moments method it is perhaps 
most instructive to first consider the formal definition 
for the moments and the manner i n  which they relate 
to a system parameter of interest,f(x). Iff(x) is defined 
for all x within the interval A < x f B. then the nth 
moment of f(x) is 

provided that the integral exists. Only nonnegative 
integral values of I? are considered in  practical applica- 
tions. 

Definite interpretations may be associated with the 
various moments. For example, the zeroth moment is a 
normalizing number, and the first, second. third. and 
fourth moments are closely related to the mean value, 

Fourier, or finite trigonometric transforms. The major 
portion of the calculation is performed in terms of the 
transform (moments) space; then, by an appropriate 
inversion, the desired answer of interest is reconstructed 
from the moments. 

The application of the moments method to  the 
solution of the Boltzmann transport equation is limited 
with respect to the geometrical configuration of the 
problem. It is usually applied only to infinite homoge- 
neous media with plane, line, or point sources. The 
method as applied to gamma rays has been described by 
Goldstein and Wilkins,14 and by Fano et al.,’ and as 
applied to neutrons by Goldstein,’ Certaine,’ and 
Aronson et a/. “ , I 9  A summary of neutron results has 
been given by Krumbein.” Applications of moments 
method results to  fallout shelter design have been 
developed by Spencer, Eisenhauer et al.’ , 2  * The 
technique is basically the same for both neutrons and 
gamma rays and a description for one should suffice for 
the other. The most significant differences lie in the 
treatment of the scattering integral and in the more 
complex nature of the neutron cross sections. The 
description presented below is for slab geometry in 
terms of the simpler gamma-ray problem, in which the 
dependent variable is the angular energy flux I(x,A,w), 
and the Compton wavelength is taken as the energy 
variable. 

Consider the following specialized form of the 
Bo1 tzman t i  equation: 

- -  
6(1 +A’- A - Cl-i.2’) =j;An f ( x , X ’ , w ’ )  Nk’(A’ ,A)  dz’dA’+ S(A,o) 6(x) , (3.69) 

2n 

variance, skewness, and kurtosis respectively. In the 
physics of  statics and dynamics the first moment of the 
mass is the center of gravity and the second is the 
moment of inertia. 

N o  such particular meanings are given to the moments 
as they are used in the solution of radiation transport 
problems (except for the second moment which is 
proportional to the Fermi age). Rather, they may be 
regarded as a transform, much the same as Laplace, 

where 

Z ( X , ~ , W )  dE do = energy flux (MeV per unit 
a rea  and t i m e )  due to 
gamma rays with energies  
in  dE about E and di- 
rection cos ines  which 
l i e  in dw about W ,  

21 
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x = spa t ia l  coordinate in s l a b  
geometry, 

A = gamma-ray wavelength 
after scat ter ing ex- 
pressed in Compton 
wavelength uni ts ,  

A’= gamma-ray wavelength 
prior to  scat ter ing,  

A = gamma-ray wavelength 
corresponding to the 
source energy E,, 

0 

w = direction cosine with 
respect  t o  x axis ,*  

p(A) = total  macroscopic c r o s s  
sect ion evaluated a t  the 
energy. corresponding to  
the gamma-ray wave- 
length A ,  

a .a’  = cos 8 ,  c o s i n e  of the  
sca t te r ing  angle  between 
ini t ia l  and final gamma- 
ray direct ions,  where n ’  
and a r e  the  init ial  and 
final unit  direction vec- 
tors  respectively,  

N = electron density,  

h 

A 
~ ( A ’ , x )  = 2n ,o(x:e) , 

a(A’,O) = cross  sect ion per e lec-  
tron for Compton sca t -  
tering given by the well- 
known Klein-Nishina 
formula ( s e e  Chapt. 2,  
Sect. 2.7.3), 

6(x) = Dirac del ta  function, 
which h a s  t h e  property 

*The cosine of the polar angle is denoted by the symbol w 
rather than by p as is the general practice throughout the 
chapter. This was done to allow the use of the standard 
notation p ( h )  for the total macroscopic cross section for gamma 
rays of wavelength h. 

lbf (x) 6(x - X) dx = f (X) 

for a < X <  b 
and loca tes  the plane 
source a t  x = 0 ,  

’) = Dirac de l ta  function 
_ _  

6(1 + A’- A - Q 
which prescr ibes  that 
the  angular change 
(a La) be consis tent  
with the  change in 
wavelength (A - A’) as  
given by the  Compton 
sca t te r ing  equation, 
A - A’= 1 - f l e a ‘ ,  

- -  

- -  

S(A,w) dE dm = plane source  of gamma 
rays (energy emission 
per unit a rea  and time of 
gamma rays  with ener- 
g ies  in dE about  E and 
direction c o s i n e s  which 
l i e  in  d o  about 0). 

Solving Eq.  3.69 by the moments method is 
similar to  the  spher ica l  harmonics treatment ( s e e  
Section 3.2) in that  the angular energy flux i s  
f i rs t  expanded as a Legendre polynomial s e r i e s :  

where the Pi(w)’s are the Legendre polynomials and the 
coefficients of the expansion are given by 

It can be shown that Io(x,X) is the energy flux and that 
ZI @,A) is the energy current. 

With this series representation for the angular energy 
flux, the integrodifferential equation (Eq. 3.69) with 
the dependent variable Z(x,X, w )  and three continuous 
independent variables can be transformed into a 
sequence of integrodifferential equations for the vari- 
ables Z,{x,A), which are dependent on only two inde- 
pendent variables. This desired result is obtained by 
multiplying Eq. 3.69 by Pi(w) dw and integrating with 
respect to  w over the interval (-1 ,+l), yielding (after 
some manipulation) the following sequence of equa- 
tions: 

j +  1 d l j  + 1  j dz. 
--+-- ’ - 
2j + 1 ax 2j + 1 a x  

+ p(A) Z j  (x,A) 

A 
= S j ( h )  6(x) + A  Pj (  1 + A’- A)Nk(h‘,A) Zj(x,X’) dh’ , j = 0 , 1 , 2 ,  . . . w . (3.72) 

0 
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In the actual calculation, the number of Legendre 
coefficients will be determined by the accuracy require- 
ments for the calculation of the moments of the 
Legendre coefficients and the exactness in the angular 
representation as implied by Eq. 3.70 will not be 
preserved. 

Elimination of the spatial variable in this sequence of 
equations is accomplished by the generation of the 
moments of the Legendre coefficients of the angular 
energy flux, which are defined as 

or 

where pa is the total macroscopic cross section evalu- 
ated at the source energy and p = pox is the number of 
mean free paths. The equations satisfied by bIIi(h) are 
obtained by multiplying Eq. 3.72 by p;+l  x”/n!  dx and 
integrating with respect to x from -m to  +m. I t  is 
because of this integration over all space that the 
application of the moments method to the transport 
problem becomes inextricably restricted to  the infinite- 
medium geometry. Using Eq. 3.73 permits the original 
Boltzmann equation to be reduced to the following 
doubly indexed sequence of linear integral equations of 
the Volterra type: 

where j = 0,1,2,. . .m, and n = 0,1,2,. . .m. The Kron- 
ecker delta function 6,, = 1 if n = 0 and = 0 if 17 # 0. 

The evaluation of the moments for a given problem 
can be accomplished by a rather straightforward numer- 
ical solution of Eq. 3.74. The ease of numerical 
calculation depends on the form of the source function 
Si@). Many problems involve monoenergetic sources 
and the Si(X)’s are given by XoSi 6(X - A,). Since the 
presence of  the delta function is undesirable for 
machine calculation, the following transformation is 
made: 

bn j (A)  = Bnj(A)  + A a 6 ( A  - Ao)Cnj . (3.75) 

Introducing the transformation defined by Eq. 3.75 
into Eq. 3.74 yields the defining equations for BHi and 
Ctij: 

+ A o k ( A o , A )  Pj(l + A ,  - A )  C n j  , (3.76) 

ai:d 

(3.77) + po’j ‘ n o  . 

The equations that define Cni are similar in form to 
the equations that define bni and Bni except that the 
inscattering integral does not appear, which suggests 
that all collisions are considered to be removals. I t  
follows that X, 6(h - A,) Cni must be the moments for 
the unscattered energy flux. Therefore the transforma- 
tion given by Eq. 3.75 separates the unscattered energy 
flux (energy flux corresponding to C,2i) from the total 
energy flux (energy flux corresponding to b,i). The solu- 
tion to Eq. 3.76 requires values of Cni as input and the 
calculated moments Bni are associated only with the 
scattered energy flux. This is convenient since the 
uncollided angular energy flux Io(x,h,w) is easily 
calculated and values of Ctri are then uniquely de- 
termined. 

For a typical calculation, the quantity of greatest 
interest is the total, or scalar, energy flux Z,(x,A). 
Therefore for this case only the moments B,, (n = 
0,1,2,. . .N) are required. However, the calculation of a 
given Bnj requires the prior calculation of B, -, ,i+ and 
B,- I , i - l  ; therefore moments other than B,, moments 
must be calculated. In general the moments BOi (j = 
0,1,2,. . .I) can be calculated directly, while a Bni 
moment cannot be calculated until calculations have 
been made of all the B!?’;’s for which (n + j )  ~ (n‘ + j ’ )  
is a nonnegative even integer (including zero) and n‘ < 
I T .  Table 3.2 illustrates a typical calculation sequence 
(for N =  5 ) .  It is noted that all the moments shown in 
the table must be calculated in order to  determine the 
BnO’s for I I  < 5. 
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Table 3.2. Sequence of Moments Calculation for N = 5 

B .  
n1 

j = O  j = l  j = 2  j = 3  j = 4  j = 5  
n 

B s  0 

‘4 B37 1 

/ 
Bo 2A’ O h  

‘ l X  B 1 /  

B 2 2 /  B 2 3  

‘32 

B1 B o /  4 

‘os 

Since Eq. 3.76 is a Volterra type of integral equation, 
it can be written as 

p(hi) v(hi) = Skki H ( X J ’ )  v(h’) dh’ + T(hJ , (3.78) 
0 

where 

The Volterra equation is characterized by ( I )  the limit 
of integration being the independent variable hi, ( 2 )  the 
value of the dependent variable v(hi) depending on the 
values of v(h‘) if A‘ < hi but not for A’ > hi, and ( 3 )  
T(Xi) involving only known or previously calculated 
quantities. A numerical evaluation of the integral is re- 
quired, for which several schemes are available. Regard- 
less of which scheme is employed, there are coeffi- 
cients Mik such that Eq. 3.78 can be rewritten as 

where 

H(hj,hi) = k(h,,hj)Pj(l + xi - Xi) = ”4 . (3.80) 

The trapezoidal rule is used for the (i = 1) interval in 
which Mji  = Ah/2 and the following explicit expression 
for v(h,) is obtained: 

For i > 1, Mii = Ah13 and Eq. 3.79 can be rewritten as 

The coefficients Mik for i even are determined by 
Simpson’s rule; for i = 3 ,  the coefficients used are M 3  ,, 
= 6 ,  M 3  = 1 ,  and M 3 2  = ’/4 and for i odd but greater 
than three, the integral from ho to  h 3  is evaluated using 
the special (i = 3 )  coefficients, and the integral from X 3  
to  hi is evaluated by Simpson’s rule. 
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The gamma-ray scattering process is such that 

H(hj,hk) = 0 when hi > X k  t 2 . (3.83) 

Therefore the sums on the index k involve only a fixed 
number of terms. Also, 

H(hj,Xo) = 0 when X i  > Xo t 2 , ( 3  24) 

and the second term in T(Xi > ha t 2) vanishes. The 
H(Xi,Xk) can be calculated directly, since only the 
Klein-Nishina formula and the Legendre polynomials 
are involved. 

At ;his point it is presumed that the required 
moments for a given problem can be calculated, and the 
reconstruction of the fluxes from the moments is 
desired. It should be emphasized that the calculation to  
this point can be performed with very few approxima- 
tions, excluding the approximations involved in the 
numerical procedures. The major source of error will lie 
in the subsequent reconstruction process since only a 
finite number of moments are available. In fact, for a 
finite number of moments there is an infinite number 
of allowable functions. The problem is basically one of 
choice: the selection of a functional form that will 
come as close as possible to describing the spatial 
dependence of Ij(x, A) while possessing a reasonably 
simple relationship to  the available moments. 

Two methods have been used to reconstruct the 
fluxes: the polynomial expansion method and the 
method of undetermined parameters. The polynomial 
expansion method assumes that Z,{p,X) behaves roughly 
as some trial function Rp) ,  where p is measured in mean 
free paths at  the initial energy; i.e., p pox .  Then 

Z j c . , A >  = f (p)gjc . ,A) I (3.85) 

where gi(p,h) contains the h dependence of the j t h .  
coefficient and provides a correction for the p depend- 
ence. I f  a reasonable choice of f (p )  can be made, then 
q(p,h) need be only a gently varying smooth function 
of p,  for example, a polynomial of degree N in p when 
(N + 1) moments are available. Thegi(p,X) could be 
represented as an infinite series with respect to a set of 
orthogonal polynomials of degree i 7 :  

The orthogonality relationship is given by 

where f ( x )  is a weighting function as well as the trial 
function f (p) .  

In practice, the representation of gi(p,h) is limited to 
a finite number of terms since only ( N t  1 )  values of 
Ani can be evaluated, given (N + 1) moments. The 
approximation for Zs(p,X) can then be written as 

I 

where Z;(p,h) is the j t h  Legendre coefficient of the 
scattered component of the angular flux. This assumes 
that values of (N+ I )  moments Bni are available for the 
reconstruction of (S(p,h). 

The reconstruction is accomplished by evaluating the 
(N  t 1) coefficient Ani in terms of the known (N + 1) 
moments Bni for a given value of j .  T o  this end, ZS(p,X) 
is multiplied by p , , ( p )  dp and the product is integrated 
from -m to +m yielding: 

I 

J 

(3.89) 

The polynomial p,(p) can be written as 

n 

P n ( p )  = i =  o slip', (3.90) 

where the ai's are known parameters for a given type of 
polynomial. The expression for A&) then becomes 

The moments Bji are defined as 

(3.92) 

Elimination of the integrals between the above expres- 
sions for AnI{X) and Bij(h) provides the desired relation- 
ship 

n A . ( A )  = r] (i!) a,Bi j  . (3.93) I 

n1 I =  0 

Practical considerations will usually restrict accurate 
calculation to the differentia1 energy flux, Zi(p,h), and 
then only the Ano(h)'s are required; that is 



26 

where 

I =  0 

In principle, Anj(X) for j > 0 can be calculated. 
However, since the angular flux I (p ,X ,o)  is usually 
highly peaked in the forward direction, the series 

(3.95) 

converges slowly, thereby requiring a large number of 
values of ’$!(~,h),  which in turn would require an 
unreasonably large number of moments. Finally, the 
scattered and unscattered energy fluxes are easily 
combined for most simple geometries: 

The polynomial expansion method described above is 
most often used for reconstructing the energy flux of 
the gamma-ray problem. This is partly for historical 
reasons and partly due to  the ability of the method to 
make full use of large numbers of moments within the 
same systematic framework of analysis. For the neutron 
problem the selection of a suitable weighting (or test) 
function is not obvious and the method loses much of 
its flexibility. 

In  using the method of undetermined parameters to  
reconstruct the fluxes, Zi(p,h) is represented as 

(3.97) 

where hij(:p) is a function having the general expected 
behavior of l ,{p,X) but containing one or more unde- 
termined parameters, and aii is an undetermined param- 
eter which includes the X dependence. In particular, let 

j = 0 and assume that (N t 1) values of the Bno(X) 
moments are known; then 

(3.98) 

The moments corresponding to  j = 0 can be written as 

n = 0, 1 ,  2, . . . N . (3.99) 

Substituting Eq. 3.98 into 3.99 yields the following set 
of ( N +  1) equations: 

n = 0,1,2,. . N .  (3.100) 

The hio@)’s should be selected so that the above 
integration can be evaluated either analytically or 
numerically, and if (N t 1) moments are available, then 
a total of ( N +  1) undetermined parameters are allowed. 

Problems not amenable to  other methods can some- 
times be solved by the method of undetermined 
parameters because of the much greater choice that can 
be made in the hij(‘p)’s. As a result this method has been 
more widely applied to  the neutron penetration 
problem. A characteristic of the method is that 
when it fails it usually fails catastrophically, leaving no 
doubt about its applicability. Usually not all of the 
moments available are needed to  obtain a satisfactory 
solution. The surplus moments can be used to  check the 
accuracy by constructing moments corresponding to  
the unused moments, a feature not so easily accom- 
plished by the other method. 



3.5. Monte Carlo Method 

A fourth technique which can be applied t o  the where 

Q 

n 

solution of the Boltzmann transport equation is the 
Monte Carlo method. The Monte Carlo method is a 
mathematical technique used to estimate a desired 
average quantity by random sampling from the prob- 
abilities describing the true stochastic processes. The 
“stochastic process” refers to those phenomena in 
which quantities assume different values at different 
times and may be represented as a family of “random 
variables” which fluctuate in time. 

Many types of problems in physics and mathematics 
can be solved successfully by random sampling or 
stochastic techniques.* 3-2 For the radiation transport 
problem, this normally involves a simulation of the 
behavior (random walk) of individual radiation par- 
ticles. With sufficient sampling it is assumed that the 
average value obtained is an accurate estimate of the 
quantity being calculated. 

Random Variable. - Consider some independent 
variable, x, which assumes values over the interval 
(-w, +m) or (a,b). Let designate any particular value 
of the independent variable; this quantity will be 
referred to as the random variable of the independent 
variable x. The physical situation will determine the 
probability that ( assumes some particular value, xi, or 
that t; lies within some interval Ax,. 

Random Number. - A set of numbers over some 
interval such as (0,l) constitutes a set of random 
numbers if they are uniformly distributed over the 
interval and if n o  correlation exists within a randomly 
selected sequence of these numbers. A rigorous defini- 
tion of the random number is that the probability of it 
(the random number) being selected from an interval y 
contained in the interval (0,l) is simplyy. 

In actual practice there are computational algorithms 
adapted t o  digital computers that  generate random 
numbers. However, these numbers are not truly random 
and are therefore more descriptively called pseudo- 
random numbers. Consider for example the mixed 
congruential method in which the sequence of random 
numbers is generated according t o  the algorithm 

x i  E (a xi- + c )  (modulo m)* , (3.101) 

m = a  large integer which is 2’ for a binary 
machine and IOx for a decimal computer, 

a,c = integers between 0 and m - 1, 

xi-, = previously calculated random number. 

With c zz 0, the following special form, called the 
multiplicative congruential method, is obtained: 

xi = a xi -  (modulo m )  . (3.102) 

For the latter method, typical values for a and m are 
5 l S  and respectively, and the resulting equation, xi 
- - 5 I S  

Ridge National Laboratory to  generate random 
numbers. The number 2 3 s  came into use since the 
computer being used had 36 binary bits in the machine 
word. 

It is most important to  ensure that the period of the 
pseudo-random number sequence is longer than the 
total number of random numbers required for a given 
calculation. If the mixed congruential method is used, a 
full period of m pseudo random numbers can always be 
achieved with the proper choice of a, c, and m. Using 
the multiplicative congruential method, the period will 
always be less than m; however, with the proper choices 
for a and rn, a useful period of m / 4  can be achieved. 

Probability Distributions. - If g is a random variable 
of the independent variable x, then F(x) = P(g < x) is 
defined for every x and can be interpreted as the 
probability that assumes a value less than or equal t o  
x. This function is commonly referred to as the 
cumulative distribution function (cdf) and it possesses 
the following properties: 

(modulo 235), has been used by the Oak 

1. F(x) is a nondecreasing function of x. 
2. F(x)  is continuous from the right at  a dis- 

’ 

continuity. 

*The notation x E y (mod m )  is read “X is congruent to y 
modulo m” and means x is the remainder of y upon division 
by m, O <  X <  m. 

27 
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3. If the variable x is a real number, then F(--) = 0 

4. The probability that the random variable assumes a 
and F(+m) = 1. 

value within a finite interval ( x l r x 2 )  is given by 

P ( X 1  .( E G x 2 )  = F(x2)  - F(X1) 

5.  If the derivative dF(x)/dx exists at x, then for a 
small interval Ax about x, the probability that the 
random variable assumes a value within Ax is approxi- 
mated by 

The derivative of the cdf is denoted as f l x )  and is 
equal to the relative frequency of the random variable 
per unit x about x .  This function is usually called the 

(3.107) 

where f (x ,y )  Ax Ay approximates the probability that 
the event 

(!X - 2 < < Gx + -, 2 y - - 2 < 7) < y +- ” )  2 
Ax AY Ax 

occurs. 
Sampling Techniques. - A very important phase of a 

Monte Carlo calculation is the selection of random 
variables according to  the appropriate pdf or related 
cdf. Consider two independent variables x and y and 
their corresponding distributions F(x) and C@). If the 
two cdf  s assume the same values, that is, if 

“probability density function” (pdf) of the inde- 
pendent variable x .  The pdf is related t o  its correspond- 
ing cdf by 

then < x only if q < y. This follows since the cdfs  
are, among other things, monotonically increasing 
functions. Therefore a distribution of random variables 

(3.103) can be determined which conform to  the cdf F(x) given 
a realization of another cdf GO): 

or 
F(xi) = G o i ) ,  i = 1,2,..N . 

(3’104) 

If f l x )  = 0 for x < a and x > b, then f ( x )  must be a 

Since random numbers can be generated with ease by a 
computer, a convenient choice for G O )  is 

F(x) = JX f (x ’ )  dx’ . 
-m 

normalized function over the interval (a,b): G@)=O, y < o ,  

J)(x’)dx’ = 1 , 

C@)=1, y > l .  where 

F(a) = 0 ,  

F(b) = 1.  The distribution GO) is realized by the generation of 
numbers Ri uniform over the interval (0,l) and the 
desired random variables xi  calculated from Also, since F(x) is nondecreasing,f(x) must be nonnega- 

tive over the (a,b) interval: 

f ( x )  2 0 for a G x  < b . 
X .  

F(xi) = f (x’)  dx’ = RC i = 1,2 ... N . (3.108) 
-m 

For more than one independent variable (for ex- 
ample, two variables) the joint cumulative distribution 
function is given by 

which is the probability that the random variables E and 
q are less than or equal to  x and y respectively. The 
corresponding joint probability density function is 
defined as 

In principle, the previous method of sampling yields a 
random variable x i  for each random number R j .  
However some difficulties may arise in the execution of 
the inverse process, xi  = F-’ (Ri). As an alternative it is 
always possible to  use the “rejection” method, which, 
although a direct approach, involves a less efficient 
procedure since not all samples are used. Consider the 
pdf f l x )  which is bounded over the interval (a&); that 
is, it assumes some maximum value fix,) at x = x ,  as 



shown in the,  upper portion of Fig. 3.1. Define a 
modified distribution fl  (x) such that fl  ( x , ~ )  = I ,  

(3.109) 

and express the independent variable as x = a -+ R(b - 
a) where R is a random number. The procedure is to 
generate random numbers in pairs (I?,;- ,,R, J for each 
sample attempted. The combination (R2i-  ,,R,;) is 
interpreted as defining a point [a + R ,  ;- (b - U ) , R , ~ ]  
with uniform probability of occurrence anywhere 
within the rectangle which circumscribes f, (x), as 
shown in Fig. 3.lb. If the point (x; ,R,;)  falls under the 
curve fl(x), the random variable xi is generated. If it 
falls above the curve (shaded area), the sample is 
rejected. The procedure for the ith sample is 

1 .  Select two random numbers ( R 2 ; -  l , R 2 i ) .  

2. Calculate x i ;  x i  = a + R ,  ;-, (b - a). 

3. Evaluate f i  ( x i ) .  

ORNL-DWG 70-7569 
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Fig. 3.1. The Probability Density Function f ( x ) .  (a )  
Unmodified Distribution; ( b )  Modified Distribution f l  (x) = 

f(x)/f(x m). 
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4. Test fi  (x i )  2 R 2 i ;  if yes, accept sample; if no, reject 
sample. 

Examples of Sampling Particle Transport Processes. - 
The following examples of sampling procedures are 
typical of those performed during the course of 
generating a particle history: 

1 .  Select a nuclide from N kinds of nuclides in a 
mixture. (The scattering kernel will, in general, depend 
on the particular nuclide. Hence it is simpler to select a 
scattering angle and energy for a particular nuclide than 
for a mixture.) 

Each kind of nuclide has a total macroscopic cross 
section C,,, and the total macroscopic cross section for 
the medium, C,, is given by 

N 
c, = c, . 

n =  I 

Nuclide 1 is selected if a random number R is less than 
Z l / Z t ,  and the ith nuclide is selectecTif 

i- 1 

n=l "= 1 

Once the nuclide has been selected, a choice may be 
made between an absorption or a scattering reaction. If 
another random number R is less than Zs/Zf, where C, 
is the scattering cross section, a scattering reaction will 
occur; otherwise, it will be an absorption. 

2. Select the azimuthal scattering angle $, where its 
pdf is given by f($) = Its corresponding cdf is F($) 
= /dpf($') d$' = $/2n and a value for $ is obtained by 
setting F($) = R and solving for $: 

where R is a new random number. 

next. The pdf is given by* 
3. Pick the distance from one collision site to the 

and the cdf by 

*f(x)dx is the probability that the next collision site will occur 
within dx about x .  The pdf f ( x )  consists of two parts: 
the probability that a particle moves the distance x without 
suffering a collision, and X g x ,  the reaction probability associ- 
ated with the differential distance of travel dx.  
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Let 

- c , x  
R = l - e  , 

then 

1 
x = -- 

% I n  ( l -  R, * 

Often it is difficult or impossible to  solve for x 
explicitly, as was done in this example. A table can be 
constructed with F(x) inverted; that is, x can be 
regarded as the dependent variable and F(x) (or R )  as 
the independent variable. Thus a value of x can be 
obtained from the table for any given value of R. 

Many prescriptions for picking from various distribu- 
tions have been given by Kahn.27 Cashwell and 
Everett28 and Spanier and GelbardZ9 also give many 
procedures useful in radiation transport applications. 

Evaluation of Integrals. - For the evaluation of single 
or double integrals, the usual numerical integration 
schemes will give accurate results with less effort, but 
for hgher  order multiple integrals, Monte Carlo be- 
comes a practical tool.’ ’ 

The method can be demonstrated by considering the 
Monte Carlo evaluation of a single integral, for example, 
the integral 

which generates the average of the function g(x) 
weighted by the pdf f (x) .  The integral can be rewritten 
as 

with 

F ( x )  = [ f ( x ’ )  dx’. 

The function F(x) is the cdf corresponding to  f ix) .  With 
this transformation a selection of values of F(x) with 
uniform probability over the interval (0,l) is equivalent 
to the selection of values of x according to  f(x) over the 
interval (a,b). The values of the random variable x are 
sampled from@) and for the ith random number, R,, 
the i th  selection of the random variable is given by xi = 

F-’ (R j ) .  There is a corresponding value g(xi), and an 
estimation of the value of J is given by 

where ?is the Monte Carlo estimate of J, and N is the 
arbitrary number of samples. 

When generalized to  multidimensional integrals Q, the 
above procedure gives 

where P denotes the multidimensional phase space. 
Then the Monte Carlo estimate of Q is given by 

where the samples having phase space coordinates Pi are 
selected according to  a complicated set of probabilities 
giving rise to  the probability density function f(P). 

Integral Forms of the Boltzmann Equation and the 
Random Walk. - The application of this technique to  
radiation transport becomes clear if the Boltzmann 
equation is written as an integral equation. Following 
Goertzel and Kalos? the phase space coordinates of a 
particle will be denoted by (P) or for the general 
six-dimensional phase space by (<E,a) where 7 is the 
position variable, E the particle’s kinetic energy, and 
the unit vector its flight direction. 

The motion of the particle may be completely 
described in terms of the flux density @(P), the collision 
density $(P), or the density of particles leaving col- 
lisions x(P). The collision density is so defined that the 
expected number of collisions of the particle within the 
medium in the volume of phase space Vis given by the 
integral 

The flux density may be defined as the collision density 
divided by the total cross section Zr(cE); then 

The density of particles leaving collisions is defined so 
that the expected number of particles appearing in the 
volume V of phase space either as a result of a collision 
or directly from a particle source is given by 





actual implementation of the random walk procedure is 
accomplished by approximating the integrals implied in 
the collision and transport operators by the sum 

(3.119) 
n = o  

where 

xn(P) = the emergent particle density of particles that 
have undergone exactly n collisions and have 
phase space coordinates (P), 

xo (PI = w, 
xn(P) = C(r,!? +E,a'  + D)IT(?+&,~)  xn-l(p) . 

(3.120) 
Similarly, 

$(P)= $"(PI 2 (3.121) 
n = l  

and 

@(P) = E (€J."(P) , 
n =  1 

(3.122) 

where 

$n(p) = the event density of particles which have 
undergone exactly n - 1 collisions and are 
thus enteringtheir nth collisions and have the 
phase space coordinates (P) 

= T(? +~,E ,L?)  x - 1 ( 7 , ~ , R ) ,  (3.123) 
- -  

and 

@"(P) = V ( P ) / Z & E ) ' .  (3.124) 

Substitution of Eq. 3.123 into Eq. 3.120 yields the 
following relationship between xn and $n : 

x"(P)=C(tE'+E,E'+ fi)Gn(<E'$). (3.125) 

In solving for the basic quantities mentioned above or 
for others determined by these quantities, the sampling 
in phase space is accomplished by following particle 
case histories from birth [sampling from S(P)] to  death 
by absorption or leakage. This analogy to real particles 
has led some t o  call Monte Carlo a theoretical experi- 
ment. For adequate numbers of case histories to be 
traced, a computing machine is necessary; so it is no 
coincidence that the development of Monte Carlo 
methods has closely paralleled the development of 
highspeed computers. 

When generating the sequence of events in the life of 
a case history, certain quantities of interest are selected 
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or computed at each step of the random walk. Each 
step may be regarded as a collision or as a flight. The 
quantities associated with the collision, called "collision 
parameters," are the phase-space coordinates such as X, 

y, and z (spatial coordinates), Q, 8, and y (directional 
coordinates before or after the collision at x, y ,  z ) ,  the 
energy E (before or  after the collision), and other 
quantities deemed useful, such as Zt(x,y,z,E). The steps 
proceed as follows: 

1. Select the initial position, energy, and direction 
from the source function S(P). 

2. Select the next collision site from e-=t1,  which is 
the distribution of flight lengths in units of the mean 
free path. 

3. Force the particle to  scatter* with its statistical 
weight modified by the probability of scattering 
Zs(CE)/Zt(Q?); or performing a collision survival test 
with a survival probability of Zs(<E)/Zt(<E). In the 
latter case, the particle's statistical weight remains un- 
changed if it survives a collision and is set equal to  zero 
if it is absorbed. 

4. Select the emergent energy and change in direc- 
tion of a scattered particle from the appropriate colli- 
sion kernel. The energy loss and change in direction are 
usually related. That is, if the polar scattering angle is 
selected, the energy loss is then determined by the 
kinematics. For example, in treating gamma-ray Comp- 
ton scattering, the scattering angle 0 is often picked 
from the pdf 

du(f3, E ' )  

a 

where du/da is the differential Compton scattering 
cross section which describes the probability that a 
gamma ray of energy E' will scatter through an angle 0 
per unit solid angle. The new energy E is then 
determined from the Compton formula 

E '  
E =  

1 + E'(1 - COSO) 
' 

where the energies are given in electron rest-mass units 

In the case of neutrons, the scattering angle is 
generally selected in the center-of-mass system, since 
the scattering laws in the center-of-mass system are rela- 
tively simple, and then the angle is converted to  the 

(m0c2 >. 

*This alteration of the analog sampling scheme is a form of 
importance sampling and will be described more completely 
later in this section. 
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n 

n 

laboratory system. The kinematics of the collision 
usually determine the new energy except in cases such 
as fission and inelastic scattering when the energy of the 
emitted neutrons must be picked from an independent 
distribution. 

Unless polarization effects are taken into account, the 
azimuthal scattering angle distribution is assumed t o  be 
uniform. 

Termination of a history generally takes place when 
the particle is absorbed, reaches a portion of phase 
space not allowed, or is killed according to  some 
prescription based on the particle's weight (see, for 
example, the discussion of Russian roulette given 
below). The most common areas of phase space not 
allowed are spatial regions exterior to the system 
considered or energy regions below an arbitrary cutoff. 

Solution of the adjoint transport equation, Eq. 3.3, 
by the Monte Carlo method is for many problems the 
only practical method. As for the forward case, integral 
forms of the adjoint Boltzmann equation are the formal 
basis for the random walk logic. A detailed and inter- 
pretive derivation of these integral forms is presented in 
Appendix 3A along with a discussion of how they relate 
to a Monte Carlo solution of  an adjoint problem. 

Importance Sampling. - In any numerical integration 
scheme it is essential for accuracy to  process a sufficient 
number of points in the phase-space regions where large 
contributions are made by the integrand. In many 
Monte Carlo problems adequate sampling becomes a 
crucial problem. For example, in deep-penetration 
shielding problems analog sampling may not within a 
reasonable period of time yield any histories for 
particles traveling through the regions of interest. Even 
when a few histories that make important contributions 
are obtained, the probable error may be too large, and 
increasing the number of histories decreases the error 
only slowly (inversely to  the square root of the number 
of histories). A possible solution to the problem is to  
alter the sampling scheme to one which samples 
primarily from the important regions. 

I n  importance-sampling techniques, the basic 
stochastic process is so modified that the event density 
of the basic process is multiplied by a chosen function 
(importance function) which measures the importance 
of an event a t  (P) on the quite reasonable basis that 
important regions of the phase space should be sampled 
most frequently. Important regions are those in which 
events contribute, directly or potentially, most heavily 
to the desired answer, the consideration of which 
provides some insight t o  the selection of the importance 
function. 

When the sampling schemes are altered, the concept 
of statistical weight is introduced to correct for the 

altered or biased probability, so that the expected value 
of the mean will not be affected. For example, the 
information obtained from a case history is increased 
(and thus the probable error is decreased), generally, by 
not permitting absorption. Absorption is accounted for 
by reducing the weight of each particle by the factor 
CJC, or, to  be more general, by the ratio of the 
average number of particles emerging from a collision t o  
the number entering a collision. The weighted particle 
whose history is being traced may be thought of as a 
bundle consisting of a number of subparticles, the num- 
ber being proportional to  the weight. At each collision 
some of the subparticles in the bundle are absorbed, 
resulting in a decrease in the weight. 

Russian roulette and splitting can be used t o  decrease 
or increase (respectively) the sampling in any region of 
phase space and as such constitute forms of importance 
sampling. Thus when the weight becomes lower than 
some arbitrary value, a game (Russian roulette) is 
played in which a particle is killed if R > C, where C i s  
the survival probability (0 < C < I ) .  If R < C, the 
particle survives and the weight is increased by the 
factor l /C  The surviving particle then represents all 
those particles killed in the game. When the particle's 
weight exceeds some arbitrary value, the particle is split 
into two or more particles with the appropriate weight 
reduction. These tests may be performed when a 
particle crosses into an important region of phase space 
or at  the first collision site in such a region. 

Importance sampling can be considered in a general 
way by referring back to Eq. 3.1 10, which can be 
rewritten as 

where 

with the restrictions that f*(x)  = 0 only when f l x )  = 0 
and that 

The expected value of J remains the same in a Monte 
Carlo solution involving sampling from f*(x)  and 
evaluating g*(xi). However, it can be shown that the 
variance is not the same, making it possible to  improve 
the variance if f*(x)  is selected properly. It is obvious 
that 
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which shows that the statistical weight correction factor 
f lx) / f"(x) is to  be used when sampling fromf*(x) and 
evaluating g(x). 

For example, it is well known that in shielding 
problems the high-energy neutrons from a fission source 
dominate the penetration. In sampling from the Watt 
fission spectrum,30 however, less than 1% of the 
samples have energies greater than 7.5 MeV. Obviously, 
importance sampling is needed. One way is to  pick from 
a uniform distribution bounded by the energies E ,  and 
E,. I f  it is assumed that the fission spectrum is given by 
the pdff(E), the pdf can be modified (without changing 
the expected means) by the pdff*(E) = (E, - E,)- '  in 
the following manner: 

The selection of energy is made from f*(E), and the 
particle weight is corrected by the factor f o / f * ( E ) .  
The cdf corresponding to  f*(E) is given by 

E - E ,  

E2 - E ,  

The selection of an energy E is accomplished by setting 
F*(E) equal to a random number R and solving the 
resulting equation for E, which yields 

E = E ,  + R ( E ,  - E l )  

Further discussions of importance sampling can be 
found in refs. 23-29. In many cases the importance 
function is selected arbitrarily and intuitively. A more 
systematic (and generally successful) approach is to  use 
the value f ~ n c t i o n , ~  a solution of the equation adjoint 
to  the Boltzmann transport equation. The value func- 
tion has been shown to be a very good and sometimes 
optimum importance function for biasing the original 
Monte Carlo procedure. In most cases, a reasonable 
approximation to  the actual value function will produce 
quite good results. A useful specialization of these 
techniques is the exponential transformation, which can 
be quite helpful if parameters for its use are obtained 
from a value function appr~x ima t ion .~ '  *3 

Scoring. - Thus far, only the generation of histories 
has been considered. At some point with each history a 
score must be evaluated, a score being the contribution 
to the quantity of interest. (Typical quantities of 
interest are flux density, current, absorption, heating, 
leakage, transmission, reflection, and dose.) For ex- 
ample, suppose that it is desired to estimate the flux 

averaged over a volume V of phase space. The number 
of collisions scored in the volume is an estimate of the 
collision density integrated over the phase space volume 
and is given by 

and since @(P) = $(P)/C,(P), an estimate of the flux 
averaged over the phase space volume V, per particle 
history, is 

- N  
@ =  - 

V n  C, ' 
where 

N = the number of collisions recorded in V, 

Zt =total  cross section, assumed t o  be constant over 
the phase space volume V, 

n = number of particle histories. 

Another commonly used estimator records d, for every 
flight of length di in the phase space volume of interest. 
Then the estimate of the flux is the average track length 
per unit volume: 

where M is the number of flights during the n case 
histories. It is possible to  reduce the variance of the 
estimate by using computed means in connection with 
the basic collision data. An example of this is the 
next-event estimator, which records at each collision 
site the probability that the next event is a score. There 
are many other possible means of combining analytical 
computation with random sampling, but they will not 
be discussed here. 
Statistical Accuracy. - The mean is usually the 

quantity of most interest in a Monte Carlo problem, but 
in a study of the statistical properties of the problem, 
higher moments are often calculated. One often cal- 
culated is the second moment, which is related t o  the 
mean square error in an individual sample, the expected 
value of which is called the variance and is defined as 

(3.1 26) 

where 

n = number of samples, 

x i  = value of a sample, 

P = true mean (limiting value with an infinite number 
of samples). 

E 
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In a Monte Carlo analysis, the true mean is generally 
not known and the variance cannot be calculated 
directly. However, a related quantity, called sample 
variance, can be determined and is given by 

where 
I n  
n i= l  

X = - 2 x i  = mean value of n samples. , 

The Gauss estimate for the variance is 
u 2 n  E-?,  

n -  1 
which will be denoted as Var(xi) and written as 

(3.127) 

According to  the “laws of large numbers,” the variance 
of the mean, u z 2 ,  is related to  the variance by 

2 1  

n 
0; 

and its estimate, denoted by Var(C), is given by 

Var (x 
Var(x7 = 

’ n  
(3.129) 

The sample xi  may also be regarded as the mean of 
many histories taken as a batch and the variance of the 
mean can be calculated by considering a reasonably 
large number of such batches. Only in the limit of 
many histories will the estimate of the variance be the 
same for a particular set of case histories when divided 
into different arbitrary batches. 

The standard deviation of the mean, u?, is equal to  
the square root of the variance of the mean, 

0% = [u,-“] 112 , (3.130) 

and can be approximated by 

ujZ z [Var(F)] 112 . 

The standard deviation is usually reported as a frac- 
tional standard deviation, defined as 

&m FSDG- . 
X 

(3.131) 

For a normal distribution, the standard deviation has 
the following properties: When many samples are taken 
and the true mean is known, the probability that the 
estimate of the mean will be within one standard 
deviation of the true mean is about 67%, within two 
standard deviations about 9576, and within three stand- 
ard deviations about 99%. If the true mean is not 
known, the standard deviation is an indication of the 
repeatability of a given estimate of the mean; that is, 
there is a 67% probability that a new estimate of the 
mean would be within one standard deviation of the 
previous estimate. Thus one generally computes the 
sum x? as well as the sum xi during a Monte Carlo cal- 
culation so that Var(Y) can be calculated as well as x 

There are some principles that should be kept in mind 
at this point. With adequate sampling of the important 
regions o f  phase space in shielding problems the 
distribution of the mean might be expected to  be close 
to the normal distribution, but there is a good 
possibility that it will be skewed, and the above 
interpretation of the sample variance will be far from 
correct. From a practical standpoint the above inter- 
pretations of the variance are overly optimistic. In 
many cases (especially in deep-penetration problems) it 
is typical to  undersample important regions of phase 
space and to  obtain an underestimate of the mean. 
Then the estimate of the variance is likely to  be even 
worse (frequently much worse34) and hence com- 
pletely unreliable. If the standard deviation approaches 
30 to 50% of the mean, the mean itself should be 
regarded as very unreliable. 

Use of Monte Carlo Methods Today. - Monte Carlo 
techniques may be designed to  reproduce a physical 
model in as much detail as is necessary, and so provide a 
powerful tool to  solve problems with very few com- 
promises with the physics. The Monte Carlo method is 
capable of incorporating any geometry. To use Monte 
Carlo successfully, however, generally requires a con- 
siderable investment in analysis, programming, and 
computer machine time. The importance of machine 
time is often overemphasized, with analysis and pro- 
gramming being underemphasized. It is important for 
the user to  keep in mind that a well-developed theory 
exists which specifies, in principle, a near-optimum 
procedure for solving a given problem. This procedure 
consists of obtaining the best possible approximation to  
the value function for the problem and then using this 
function to  obtain parameters for importance-sampling 
techniques or to  guide development of new sampling 
techniques. 

As an aid to  the programmer, the concept of a Monte 
Carlo programming system was developed. For ex- 
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ample, the 05R system3’ and its updated version 
06R36 can in principle be utilized to  solve any neutron 
transport problem. The framework is there (cross- 
section handling, geometrysolving routines, random- 
walk procedures, etc.), but the programmer must 
incorporate the special features he desires by adding 
subroutines to the framework. 

Traditionally, Monte Carlo codes for solving neu- 
tron and gamma-ray transport problems have frequently 
been separate codes. This has been due to  the physics of 
the interaction processes and the corresponding cross- 
section information required. However, when multi- 
group cross sections are employed, the energy group- 
to-group transfers contain the cross sections for all 
processes. Also, for anisotropic scattering each group- 
to-group transfer has an associated angular distribution 
which is a weighted average over the various cross 
sections involved in the energy transfer process. Thus, 
these multigroup cross sections have the same format 
for both neutrons and gamma rays. In addition, the 
generation of secondary gamma rays may be considered 
as just another group-to-group transfer. Therefore using 
multigroup cross sections, the logic of the random walk 
process (the process of being transported from one 
collision to another) is identical for both neutrons and 
gamma rays. 

The use of multigroup cross sections in a Monte Carlo 
code means that the effort required to produce cross- 
section libraries is reduced. [Note: A set of multigroup 

neutron cross sections (99 group, P s )  based on the 
ENDF/B file is available from the Radiation Shielding 
Information Center; some coupled neutron-gamma-ray 
sets are also available from RSIC.] 

Recently, a highly versatile and easy to  use multi- 
purpose neutron and gamma-ray transport code, the 
MORSE code,37 has been developed at the Oak 
Ridge National Laboratory. Some of its features include 
the ability to  treat the transport of either neutrons or 
gamma rays or to  simultaneously treat the transport of 
neutrons and secondary gamma rays; the incorporation 
of multigroup cross sections; an option of solving 
either the forward or adjoint problem; modular input- 
output; cross section, analysis, and geometry modules; 
debugging routines; time dependence for both shielding 
and criticality problems, an albedo option a t  any 
material boundary; one-, two-, and three-dimensional 
geometry packages; and several types of  optional 
importance sampling. 

In general, the Monte Carlo method is not the best 
method for one-dimensional problems, since discrete 
ordinates codes are likely to  be much faster than Monte 
Carlo codes. For two-dimensional problems, Monte 
Carlo and discrete ordinates methods are somewhat 
comparable, but for three-dimensional or two- 
dimensional time-dependent problems there is no com- 
petitor to Monte Carlo for a rigorous solution of 
transport problems., 



3.6. Application of Diffusion Theory 

An approach to the particle transport problem that 
neglects the detailed directional aspects of particle 
motion is that of diffusion theory. A neutron balance in 
the four-dimensional phase space ct) leads to  the 
following equation of continuity for the one-speed 
neutron transport problem: 

an (7, t )  
-= S(T, t ) -  Z a @ ( 7 , t )  - V*J(7,f), (3.132) 

at 

‘where 

n (7, t )  = neutron density (neutrons ~ m - ~ ) ,  

2 = macroscopic absorption c r o s s  sect ion 
(cm-’), 

S(T, t )  = general  source term (neutrons 

@(F, 1 )  = total  neutron f lux (neutrons cm-’  

sec- I )  , 

s e c - I ) ,  

sec- ‘) , 
J(7, t )  = net neutron current (neutrons cm-’  

dn 
-- - time rate of change of the  neutron at density (neutrons ( 3 r 1 - 1 ~ ~  sec- ’) , 

xa a(?, t )  = loss of neutrons due to absorption 
(neutrons ~ r n - ~  sec- ’ )  , 

V. J(T, t )  = loss of neutrons d u e  to convection 
(neutrons ~ r n - ~  s e c - ’ ) .  

Equation 3.1 32 can be regarded as a precise relation- 
ship that can be applied without restriction t o  the 
general problem of particle transport. However, a basic 
limitation in its use is that except for certain very 
restricted situations a tractable form of the net neutron 
current &Ct) does not exist. Diffusion theory in its 
usual form is based on the following time-independent 
expression for the net current: 

- 
J (7 )  = - D  O(D((-i) , (3.133) 

where D is the position-independent diffusion coeffi- 
cient (cm), and O@(F) is the gradient of the total 
neutron flux. It is noted that with the steady-state 
assumption, phase space has been reduced to  three 

37 

position variables as denoted in general vector notation 
by (7). Equation 3.133 is identical in form with Fick’s 
law, which simply states that the net diffusion of the 
particles (or molecules) in liquids and gases will be from 
regions of high particle density to regions of low 
particle density, with the gradient of the particle flux as 
the driving potential. The derivation of Eq. 3.133 can 
be found in any nuclear reactor theory textbook, for 
example, in the text by Weinberg and Wigner.’ 

Substitution of Eq. 3.133 into the steady-state form 
of Eq. 3.132 leads to the “diffusion equation” 

O O ’ @ ( i  ) - Xu@(T ) + S ( 7  ) = 0 .  (3.134) 

Equation 3.134 has the same form as the steady-state 
form of the PI approximation to  the spherical har- 
monics treatment of the Boltzmann equation (see 
Section 3.2). 

Certain limitations are inherent to  diffusion theory: 
(1) the scattering process is assumed t o  be isotropic in 
the laboratory frame of reference, but using a “trans- 
port-corrected’’ diffusion coefficient, 

1 D =  
3C,,(1 - 4Cu/5Ct + . . .) ’ 

mitigates this limitation; (2) the directional distribution 
of the particle flux must be nearly isotropic; (3) the 
diffusing med ium must  be a poor absorber (i.e., C, < 
Cs); and (4) the results are invalid for regions within 2 
to 3 mean free paths of boundaries, strong sources, and 
strong sinks. The existence of these limitations is a clear 
indication of the approximate nature of diffusion 
theory insofar as the physical situation is concerned. In 
reality the above conditions of applicability for diffu- 
sion theory are seldom satisfied by shielding problems. 
However, with the judicious selection of system pa- 
rameters the diffusion theory solutions of certain 
problems* compare favorably with solutions obtained 

*For example, diffusion theory has been used in fast reactor 
shielding design since the leakage spectrum peaks below 0.5 
MeV and the materials involved are nonhydrogenous (sodium 
and graphite). Also, the small source (reactor core) requires 
two-dimensional calculations, which are much simpler with 
diffusion theory. 
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with more exact theories or with the physical situation 
itself. 

A neutron shielding problem would involve neutrons 
having a continuous energy spectrum over a wide energy 
range (typically from a low keV region to  10 MeV) so 
that a “group” approach is required to  adequately 
describe the diffusion process. 

The derivation of the group-diffusion equations is 
performed here beginning with the following lethargy- 
dependent* form of the diffusion equation: 

=Jcy h(u;u’) C,(u’) @ g u ’ )  du‘ + S(F,u) , (3.1 35) 

where 

@(T;u)=a differential neutron flux that is 
differential with respect to  the 
lethargy variable 

dE 
= @ R E )  - = @(cE) E ,  I dul  

u = t h e  lethargy (a variable which de- 
scribes the kinetic energy of the 
neutron) 

=In  Eo fE,  

Eo = datum energy (frequently 10 MeV, 
the assumed maximum energy of 
fission neutrons), which corre- 
sponds to  the minimum value of 
lethargy, u 1  = 0, 

uT = t h e  lethargy which corresponds to  
an arbitrary limit to  the slowing- 
down process (neutrons with leth- 
argies greater than uT would be 
within the “thermal” group and are 
usually referred to  as thermal neu- 
trons), 

-D(u) vz@(cu) = net convective loss per unit leth- 
argy, 

*The lethargy-dependent form of the differential flux is 
preferred for this analysis because of the extreme range in the 
neutron’s kinetic energy encountered in the usual shielding 
problem (thermal energies up to and over 10 MeV) and to  
illustrate the use of the lethargy variable. It should be noted 
that the final group-diffusion equation would have exactly the 
same form regardless of which energy variable (kinetic energy E 
or lethargy u )  is used in its derivation. 

C,(u) @(cu) = absorption loss per unit lethargy, 

illur h(u‘;u) du’ = outscattering loss per 
unit lethargy, 

h(u;u’) Z,(p‘) @(TU’) du‘ = inscattering gain per 
unit lethargy, 

h(u;u‘) du = the probability that a scattering at 
the lethargy u’ will result in a 
neutron with a lethargy in the 
interval du about u ,  

C,(u) = macroscopic scattering cross sec- 
tion at the lethargy u ,  

S@=,u)=general source term per unit leth- 

~ , ( u )  

argy. 

The slowing-down range in lethargy (uT - u I  = u T )  is 
divided into NUG intervals of arbitrary size, where 

The size of the individual lethargy intervals AuG would 
be determined by the nature of a given problem but 
would in any event correspond to  the group structure 
of the available group-averaged cross-section compila- 
tions. 

The standard group treatment of the energy or 
lethargy variable can be described as follows. Define the 
integral operator,t 

I = i  d u ,  
u e A u G  

and apply it to  each term of Eq. 3.135, obtaining 

+ S(F,u) du . (3.136) 
j u e  A ~ G  

tThelintegration limits are expressed symbolically by ueAuG, 
which implies a definite integral with respect to the lethargy 
variable u over the lethargy group A U G .  
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Next, define the group flux for the Gth group as 

introduce group-averaged parameters, and represent the 
outscattering and inscattering integrals as appropriate 
summations over the lethargy groups: 

G ‘ = G  

G = 1,2, . .~vOG+1 , 
where 

C = NOC t 1 corresponds to the thermal group. 

Equation 3.137 is used t o  derive the difference 
equation for numerical solution of a particular problem. 
Consider, for example, a onedimensional problem in 
slab geometry and divide the rspace into NOS uniform 
segments A x  (uniform within a given homogeneous 
region) and designate a particular spatial meshpoint as 
x i  and point (discrete) values of @‘G(xj)  and S,(xi)  as 

and Si,c respectively. A three-point difference 
equation is obtained by representing the convective loss 
term as 

@i+ 1 ,G  - 2@i,G + ai- t .G 

-D,[ (ax)’ 
and Eq. 3.137 becomes 

N O G +  1 G 
+ 2 C;+Gr@j,G = z Cs,)+G +Si$ . 

G’=G GI= 1 

(3.138) 

A numerical solution of Eq. 3.138 can be performed 
if the group-averaged cross sections are known and if 
the problem-defining boundary conditions are specified. 
Equation 3.138 can be viewed as describing the flow of 
neutrons downward in energy (or upward in lethargy), 
starting from a given initial “fixed-source” distribution 
of neutrons. A typical calculation would begin with the 
difference equation corresponding t o  G = 1.  The spatial 
sweep is initiated at  the inner boundary, a t  which point 
the inward flow of source neutrons is specified by a 
positive partial current, and proceeds in a stepwise 
fashion through the shield with additional neutrons 
being introduced according to  the general source term, 
Si,G, and finally terminates a t  the outer (or external) 
boundary where a zero reentrant partial-current bound- 
ary condition must be satisfied. The nature of the 
calculation is such that the latter boundary condition 
will not be satisfied exactly and the solution is achieved 
by the process of iteration whereby the spatial sweep is 
repeated. This procedure as applied to  a particular 
group is commonly referred t o  as “inner iteration” and 
is discontinued when the flux is sufficiently converged 
as specified by a convergence criterion such as 

where @’I is the nth iterate estimate of the flux and E is 
the fractional change experienced by the Qn in a single 
iteration (usually ranges in value from down to  

The calculation then advances to  the next lower 
energy group (G = 2) and the above procedure (inner 
iterations) is repeated. Source neutrons for group 2 
include the downscattering loss from group 1 into 
group 2 in addition to  the fixed-source component. The 
calculation proceeds sequentially down through all 
(NOG + 1) groups, the process comprising a single 
“outer iteration.” This completes the numerical portion 
of the solution of a typical fixed-source (shielding) 
problem. Additional outer iterations would be required 
for a core-criticality problem because of the feedback 
effect of the fission neutrons. For the criticality 
problem, the outer iterations would be continued until 
a reasonably stable (from one outer iteration to  the 
next) set of iterate flux values is obtained. 

It must be emphasized that the typical neutron 
shielding problem is not amenable to  solution by the 
straightforward application of diffusion theory, because 
the neutrons are on the average very energetic and 
possess a strong forward directional bias. The limita- 
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tions of diffusion theory under these conditions are 
clearly violated and results thus obtained would be 
meaningless. But when applied to  certain special prob- 
lems in combination with other methods, diffusion 
theory has proved useful. Applications of diffusion 
theory to  the neutron shielding problem are discussed 
further in Section 3.9. 

The use of diffusion theory to  predict gamma-ray 
energy fluxes seems to  be unjustified on superficial 
examination of the gamma-ray transport phenomenon. 

' 

Certainly deep penetration by gamma radiation cannot 
be described by diffusion theory, because the resultant 
gamma-ray flux is due to  photons that have maintained 
a strong directional correlation. But diffusion theory 
seems to  be adequate for small-to-moderate penetra- 
tions relatively near the source under conditions where 
the low-energy end of the spectrum predominates and 
the scattering is more nearly isotropic. These restricted 
conditions exist, for example, for gamma-ray heating 
 calculation^.^ 



3.7. Invariant Imbedding Method 

P 

The method of “invariant imbedding” is not another 
technique for solving the Boltzmann transport equation. 
Rather it is a different fundamental approach to the 
mathematical description of particle transport. The 
method has for its historical basis the early works of a 
Russian astrophysicist, V. A. Anibarzumian, who con- 
fined his interest to the transport problems of astro- 
p h y ~ i c s . ~  Recent  investigation^^^,^ ’ have shown that 
the invariant imbedding approach can be applied to a 
much broader class of problems, including the neutron 
and gamma-ray transport problems encountered in 
radiation shielding. 

The dependent variables of the invariant imbedding 
formulation are the reflection and transmission func- 
tions, with the region dimensions (shield thickness) and 
the energy and direction of the particle comprising the 
six-dimensional phase space. I n  this context a particular 
shielding problem is viewed as being “imbedded” in a 
more general class of shields having different dimen- 
sions. Characteristically, and in contrast with solutions 
of the Boltzmann transport equation, the invariant 
imbedding method provides transmission and reflection 
information for a large variety of shields, as well as for 
the specific problem of interest. However, the detailed 
behavior of the radiation during transport through the 

TRANSMITTED x=o 
... PARTICLES 

shield is not explicit during the analysis and for that 
reason is unavailable, a not too serious shortcoming - if 
not frequently a real advantage - for the typical 
shielding problem. 

The reflection and transmission functions of invariant 
imbedding are each defined by an integrodifferential 
equation. These equations can be derived by applying 
the usual conservation principles of radiation transport 
to  a shield system, the dimensions of which are allowed 
to vary by differential amounts. For simplicity and 
greater clarity, the derivations are performed in slab 
geometry with azimuthal symmetry. Phase space be- 
comes three-dimensional: the shield thickness X ,  the 
energy variable E, and the direction variable p (cosine 
of the polar angle 0). A schematic representation of this 
configuration is shown in Fig. 3.2. 

T h e  r e f l e c t i o n  of particles is denoted by 
R(X;p,E;po,Eo) d p  dE and is defined as the number of 
particles that are reflected from a slab of thickness X 
with energies in dE about E and directions that lie in dp 
about p per incident particle with energy Eo and 
direction p o  ; the reflection function R(X;p,E;po,Eo) 
can be regarded as an angular flux within the dif- 
ferential slab thickness dX. The reflection equation 
describes the change in the reflection function due to  

ORNL-DWG 67-12748 

INCIDENT PARTICLES 

* x  

REFLECTED 
PART I C LE S 

Fig. 3.2. Geometry for Invariant Imbedding Technique. 
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changes in the shield thickness and is formulated the second term is the loss of reflected particles due to  
without involving the transmission function. The deriva- collisions within dX. The third, fourth, fifth, and sixth 
tion is accomplished by equating the difference in the terms represent the inscattering gains due to  scattering 
reflection functions for slabs of thicknesses X t dX and collisions within dX. The third term represents those 
X with the net change in the reflection function which particles that are scattered directly into dp about p and 
results from collisions suffered by the particles within dE about E. The fourth term is the gain from particles 
the differential slab dX: that scatter from dX into the slab of thickness X with 

-t so dp' ~ Y d E ' ~ s ( X . E o - + E ~ p o + p ' )  R ( X ; p , E ; p ' , E ' ) -  dX d p d E  

- 1  PO 

dE'  R ( X ; p ' , E ' ; p o , E o )  C,(X,E"E,p'+p) dX d p  dE 

+ s,' sp dp" Lrn dE' Jrn dE " R(X; p ', E '; p o ,  E o )  Z J X ,  E '+E ", p '*p ") 

x R ( X ;  p, E ;  p",  E ") dX dp dE , (3.139) 

where C,(X,Eo) is the position-dependent total macro- 
scopic cross section evaluated at the particle energy E o ,  
and C,(X,Eo+E',po+p') dp' dE' represents the position- 
dependent differential scattering cross section which 
describes the probability that a particle with an initial 
energy Eo and an initial direction po undergoes a 
scattering collision that places it into a direction which 
lies in dp' about p' with a new energy in dE' about E'. 

The first and second terms on the right-hand side of 
Eq. 3.139 represent the particle losses due to  collisions 
within d X  (any collision is presumed to  alter the 
particle's energy and direction). The flight paths within 
the volume element dX are dX/po and dX/p for the 
first and second terms respectively. The first term is the 
loss of incident particles which collide within dX, and 

energies in dE' about E' and directions dp' about p' ,  
and then are reflected from the slab of thickness X with 
the proper emergent angle and direction. The fifth term 
is the gain from particles that scatter from the slab of 
thickness X into dX with energies in dE' about E' and 
direction dp' about p' and then are scattered within dX 
with the proper emergent energy and direction. The 
sixth term is the gain from particles that scatter from 
the slab of thickness X into dX with energies in dE' 
about E' and direction dp' about p' ,  are scattered back 
into the slab of thickness X with energies in dE" about 
E" and directions dp" about p", and are finally 
reflected from the slab of thckness X with the proper 
emergent energy and direction. A rearrangement of 
terms leads t o  the usual form of the reflection 
equation: 

I 
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E 
e 

Q 

1 
+ so dp’ lm dE’\Cs(X,Eo+E;po+p’) R ( X ; p , E ; p ’ , E ’ ) -  

- 1  P O  

dE ’ R(X;  p ’ ,  E ’; po,  E o )  c s (X ,E  ’ + E , p  ’+p) 
+ L1?Lrn 
+ 4’ 1 dp” dE’ Lm dE “ R(X;  p ’) E ’; p o t  E o )  C,(X, E LE ‘ ; p  ’-+p ”) 

P - 1  

with the initial condition that 

The transmission of particles is denoted by 
T(X;p,E;po,Eo) dp dE and is defined as the number of 
particles that are transmitted through a slab of thick- 
ness X, emerging with energies in dE about E and 
directions in d p  about p per incident particle with 
energy Eo and direction p o .  The derivation of the 
transmission equation is accomplished in a manner 
similar t o  that used to  derive the reflection equation 
and follows the argument that the difference in the 
transmission functions for slabs of thicknesses X + dX 
and X is due t o  collisions suffered by the particles 
within the differential slab d X .  A familiar form of the 
transmission equation is 

x R(X;  p, E ;  p ”, E ”) , (3.140) 

with the initial condition that 

where the Dirac functions 6 ( p  - p o )  6(E - EO) 
mathematically represent the monoenergetic mono- 
directional incident particles. 

The first term in the right-hand side of Eq. 3.142 rep- 
resents the decrease in the transmission function due t o  
collisions suffered within dX (any collision is presumed 
to  alter the particle energy and direction). The second 
and third terms represent the inscattering gains due to  
scattering collisions within dX. The second term is the 
gain from particles that scatter from dX into the slab of 
thickness X with energies in dE‘ about E’ and directions 
in dp‘ about p ‘ ,  finally emerging with energies in dE 
about E and directions in d p  about p .  The third term is 
the gain from particles that are reflected from the slab 
of thickness X into d X  and are then scattered back into 

O dp’ 
dE ’ C,(X,Eo+E,‘po+p’) T (X;  p ,  E;  p ’, E ’) 

+ s,’: j o  dp” lW dE’ dE ” R(X;  p ’ ,  E ’; p o ,  E o )  Cs(X,E ‘+E ’ : p  ’+p ”) 

I-1 -1 

x T(X; p,  E ;  p ” ,  E ”) , (3.142) 
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the slab of thickness X ,  finally emerging with energies 
in dE about E and directions in dp about p.  

The reflection equation (Eq. 3.140) and the transmis- 
sion equation (Eq. 3.142) are both nonlinear integrodif- 
ferential equations which for the radiation transport 
problems of nuclear engineering form problems of the 
“initial-value” type. The reflection equation involves 
only the reflection function as the dependent variable, 
thereby allowing its solution without consideration of 
the transmission equation. The transmission equation 
appears simpler in form (fewer terms) but contains the 
reflection function, which must be known before a 
solution can be effected. Therefore a typical shielding 
transmission problem (initial-value) would involve the 
solution of a coupled pair of nonlinear intergrodif- 
ferential equations. T h s  is in contrast to  the Boltzmann 
equation (Eq. 3.2), which is a linear integrodifferential 
equation and for the same application forms a “bound- 
ary-value” type problem. 

Analytical solutions of the reflection and transmission 
equations for practical problems are not possible 
because of their integrodifferential form; the non- 
linearities are a further complication. As a consequence, 
all useful solutions are numerical in nature and are 
accomplished through the use of digital computers. The 
numerical techniques are similar to  those used to  solve 
the Boltzmann equation by the discrete ordinates 
technique, in which a specific combination of the 
independent variables defines discrete values of the 
neutron flux @ I , G , D  (see Section 3.3 for a more 
complete description). 

In invariant imbedding, specific combinations of the 
energy and direction of the particle define the particle’s 
state “i.” In this context, the discrete reflection variable 
Rji(X) is the number of particles in state i reflected by a 
slab of thickness X due to a unit source of particles in 
state j that are incident on the slab. The discrete 
transmission variable Ti,-(* is the number of particles 
in state i that penetrate a slab of thickness X due to  a 
unit source of particles in state j that are incident on 
the slab. 

More detailed derivations of the defining equations 
for the reflection and transmission functions in slab 
geometry and a description of the numerical procedures 
are presented by Shimizu and M i z ~ t a . ~ * * ~ ~  The multi- 
group approximation was used for the energy variable 
and the direction cosines were discretized according to  
the Gaussian zeros. Solutions for the gamma-ray trans- 
port problem are presented for slabs of iron, water, 
lead, and concrete and also include comparisons of 
these results with experimental data and with moments 
method and Monte Carlo calculations. 

A paper by Mathews, Hansen, and Mason44 describes 
the application of invariant imbedding t o  practical 
energy-dependent neutron shielding problems, such as 
for a thick water shield and a thinner heterogeneous 
iron-polyethylene-iron shield. The reflection and trans- 
mission equations in discrete variable notation, along 
with a general description of numerical techniques used 
in their solution, are also included. 

A detailed set of reflection, transmission, and escape 
function* equations in particle-state notation for the 
monoenergetic neutron transport problem in slab geom- 
etry is given by Mingle,45 who includes applications of 
the method of escape probabilities, blackness coef- 
ficients, and critical size determinations. 

The application of the invariant embedding method 
to  a nonsteady energy-dependent transmission and 
reflection problem in slab geometry is described by 
M ~ c k e l . ~  94 The time-dependent invariant imbedding 
equations include time derivatives which are eliminated 
by a Laplace transform (0-  to  m). Results are presented 
for the time-dependent asymptotic neutron flux in a 
“pulsed” experiment, and for the thermal utilization in 
an infinite slab lattice. 

A review of previous and related work in invariant 
embedding is presented by Pfeiffer and S h a p i r ~ . ~ ”  This 
includes the concepts of transmission and reflection 
matrices (response matrices); adding, doubling, and 
halving relations; and response functions. The use of 
response functions in shielding and criticality problems 
is described and some related experimental work is also 
presented - in particular a demonstration of the 
feasibility of obtaining cross sections from experi- 
mentally determined response functions. 

The advantages and disadvantages of the invariant 
imbedding method relative to  other techniques should 
strongly influence the extent and directions of future 
shielding applications. The advantages of the method 
are that it yields very detailed solutions (gives energy 
and angular distributions), it is efficient for deep 
penetrations with reasonably short computer times, it is 
well suited for heterogeneous shield configurations, the 
effects of boundaries are implicitly and exactly in- 
cluded in the solution, and it has the computational 
advantages of being an  initial-value problem. The 

*When internal sources are present, it  is necessary to 
introduce the “escape function,” defined as the contribution to 
the surface current due to a particular volumetric source. The 
theory and derivation of the defining equations for the escape 
function are very similar to that presented in this section for the 
reflection and transmission functions. 
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disadvantages of the method are that it is inefficient for 
thin shields (the method is very slow during initial 
phases of solution), it is difficult to  apply to other than 
slab geometries, it does not generate detailed particle- 
state information within the shield (actually an ad- 

vantage from a computational point of view), the basic 
equations are nonlinear (not too serious if solution is 
obtained numerically), and the calculational techniques 
and “user” computer programs are not as advanced as 
those for the solutions of the Boltzmann equation. 



3.8. Kernel Methods 
The relative value o f  kernel methods in modern 

shielding calculations is a matter of widely varying 
opiiiion. Those accustomed to using the more sophis- 
ticated methods may hold kernel methods in low 
regard: however, they are still often the method of 
choice for many engineers in design work. Experience 
has shown that these methods are useful but !hat they 
cannot solve all shielding problems.* 

The basic idea of a kernel is obvious enough physi- 
cally. The field associated with a distributed source may 
be determined by evaluating and summing the effects of 
each elementary portion of the source. If the kernel 
K(P’ + P) is the effect of interest a t  the observer’s point 
P caused hy a unit point source a t  the source poinr P’, 
then the  effect of interest a t  P d u e  t o  a source distribu- 
tion S(P’) dP’ is the integral of K(P’ +P) S(P’) dP‘ over 
the whole range of P‘ occupied by the source. Note that 
P i i i  general defines a point in phase space, which 
includes spatial, energy, direction, and time coordi- 
nates. I n  the terminology of mathematical physics the 
function K(P’+ P) is called Green’s function; however, 
i t  is more commonly referred to as an attenuation 
kernel, a point-to-point kernel, a point kernel, or simply 
as a kernel. I t  may be used to  calculate any of several 
effects of interest such as dose rate, flux density, energy 
absorption, or energy spectra. For example, the differ- 
ential dose rate at P may be evaluated from 

D(P) = K,(P’ + P) S(P’) dP’ , (3.144) 

which merely states that the solution of the general 
problem can be obtained by integrating over all sources 
if the point source solution of the dose rate,K,.(P’+P), 
is known. The underlying assumption is that the 
problem is linear; that is, the sources do  not interact 
with each other. 

The requirement that the general solution for the 
point source be known greatly limits the practical 
usefulness of Eq. 3.144. The general point source kernel 
depends on geometry, and, for practical reasons, only 
data for simple cases such as infinite homogeneous 
media have been compiled. Solving Eq. 3.144 can be a 

*Brief descriptions of several computer codes based on the 
kernel technique are given in Appendix 3B. 

practical procedure if the kernel for the dose is a 
simple function of distanc_e bgween source and detec- 
tor, that is, given by K,(Ir r‘l), which implies simple 
ray tracing.1 from the point a t  r’ to the point at  E Then, 
for example, the flux density due to a surface source is 
given by 

q r l =  JK,,w) W)  ~ A ( R )  (3.145) 

where 

K p ( R )  = kernel for particle flux, 

R =  1;- 71, 
d A ( R )  = a differential area selected so that [..e prod- 

uct [S(R)  d A ( R ) ]  gives the strength of an 
equivalent point source located at  a distance 
R from the detector. 

The application of such point-to-point kernels for 
radiation transport has a history which is synonymous 
to much of the history of shielding technology and will 
be reviewed briefly in the following sections. 

3.8.1. ELEMENTARY GAMMA-RAY KERNELS 
AND BUILDUP FACTORS 

In the analysis of gamma-ray transport problems, the 
uncollided flux (i.e., the flux due to source gamma rays 
that arrive a t  the point of interest without suffering an 
interaction) is usually easily calculated. For example, 
for the case of a monoenergetic point isotropic source 
in a homogeneous medium, the uncollided flux (gamma 
rays sec-’ ) is given by 

(3.146) 

?Although all ray-tracing kernels are applied as though the 
radiation proceeds straight ahead, there is a method called the 
“straightahead approximation” which assumes that the impor- 
tant radiation continues straight ahead in spite of suffering 
interactions. This model has been used for treating neutron and 
gamma-ray transport but its best application is for charged 
particles, especially protons. Most of the energy loss is by 
ionization and excitation, and the assumption is a rather good 
one that the charged particle undergoes continuous slowing 
down in a straight line at a rate given by the stopping power. 

46 
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where 

S = source strength (gamma rays/sec) ,  
u ( E )  = macroscopic total  cross sect ion 

(cm-’) evaluated a t  the init ial  
gamma-ray energy E ,  

~ - j ~ ~ ) ~  = material attenuation factor,  which i s  
the  probability that a gamma ray of 
energy E t ravels  a d i s tance  R (cm) 
without suffering a col l is ion,  

1 
- -  geometric attenuation for a point source 
4;1R2 (Cm-z), 

Calculation o f  the scattered flux is in general much 
more complex. The scattered component is handled by 
introducing a buildup factor, which accounts for the 
increase (Le.. buildup) in the flux at some point F that is 
due to  the scattered gamma rays. It is this buildup 
factor. defined for an infinite medium as 

s o m e  d e s i r e d  property (particle flux, 
energy flux, dose,  e tc . )  of the  

total  gamma-ray flux a t  R 

same property due  t o  the  uncollided 
flux at  R 

B -  , (3.147) 

that serves as the basis for formulating the point kernels 
required for gamma-ray shield analysis. For the calcula- 
tion of dose, the kernel is given by 

p a p )  E 
- _ _  Br , (3.148) 

47rR2pr 

where par(@ is the macroscopic energy absorption 
cross section for a material such as tissue evaluated at 
the initial gamma-ray energy E. pt is the density of 
tissue, and B, is the dose buildup factor, or, in keeping 
with the newer n o r n e n ~ l a t u r e ~ ~ ~ ~ ~  * the exposure 
buildup factor, which is the ratio of the actual dose to 
the dose from uncollided photons at R. Similarly, if the 
desired property is the energy absorbed per unit mass, 
the kernel is given by 

p, (E)  E 
- - Bo , (3.149) 

4rrR2p 

*See also Chapter 2 of this Handbook, 

where p , (E)  is the macroscopic energy absorption cross 
section evaluated at the initial g a m a - r a y  energy E for 
the material in which the energy is absorbed, p is the 
density of the material, and B, is the energy absorption 
(or energy deposition) buildup factor, which is the ratio 
of the actual energy absorbed at  R to the uncollided 
energy absorbed at R. 

Most buildup factors for gamma rays are those 
published in 1954 by Goldstein and Wilkins,I4 who 
give the results of infinite-medium calculations for six 
elements and wafer and up to nine source energies, 
covering the range of interest for reactor and weapons 
shielding. Results for other elements and energies may 
be obtained by interpolation of the data for the 
elements given since the buildup factors are smooth 
functions of energy and atomic number. 

Although Goldstein and Wilkins obtained their build- 
up factors for water from a moments method calcula- 
tion, they recommend an interpolation method to  
determine buildup factors for other homogeneous or 
near-homogeneous mixtures (media in which the par- 
ticle sizes are significantly smaller than a mean free 
path). They suggest that buildup factors for such 
materials can be derived from those for the elements by 
the so-called equivalent or effective Z (atomic number) 
method. In t h i s  method, the equivalent atomic number 
for the mixture is obtained by a recipe with a sound 
theoretical basis: it involves plotting, as a function of 
energy, the ratio of the energy-dependent total attenua- 
tion coefficient to  the total attenuation coefficient for 
the source energy and comparing the results on a per 
electron basis with corresponding curves for individual 
elements until a reasonable match is found over the 
region of interest. To be completely equivalent requires 
that the element and mixture also have the same ratio 
of the total cross section to the scattering cross section, 
which usually occurs to a good approximation when the 
shapes are matched except for very low-energy photons. 
Walker and Grotenhuis’ I used this technique t o  deter- 
mine the buildup factors for four types of concrete: 
ordinary, ferrophosphorus, magnetite, and barytes. The 
results should be better than some determined ear- 
~ier,’ ’ 9’ since more realistic effective atomic numbers 
were assumed. 

More recently buildup factors for homogeneous mate- 
rials have been calculated directly rather than obtained 
by the effective Z method, most of them by Clark et 
u Z . , ’ ~ - ’ ~  who applied the moments method to three of 
the aforementioned concretes (excluding ferrophos- 
phorus concrete), as well as to  air, wood, sand, and LiH. 
Similar buildup factors were obtained for ordinary 
concrete by Chilton.’ 
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Extension of the buildup factor concept to  laminated 
or multilayered shields leans rather heavily on rules of 
thumb and physical intuition. It is always possible to  
bracket the answer by alternately using the smallest and 
largest buildup factors (evaluated for the total number 
of mean free paths through the shield) of the individual 
materials present in the composite shield. Typical 
multilayered shields involve alternate layers of materials 
with high and low atomic numbers, for example, lead 
and water. In such cases the sequence of the materials is 
important. The buildup factor in lead alone is low 
compared to  water because of the large photoelectric 
cross section of lead at the lower energies. Conse- 
quently a layer of lead following the water will rapidly 
absorb the low-energy scattered photons which were 
produced in the water. On the other hand, when the 
water follows the lead there is relatively little absorp- 
tion of the low-energy photons and the overall buildup 
factor will be greater than in the former case. After 2 or 
3 mean free paths of the second layer, the gamma-ray 
spectrum tends to  readjust to  the new medium and 

approaches the spectrum that would exist if the whole 
structure consisted of the outermost material. All this is 
clearly demonstrated in Figs. 3 . 3 ~  and b ,  which 
compare the individual infinite-medium buildup factors 
for lead and water with buildup factors calculated by 
Bowman and T r ~ b e y ~ ~ ~ ~ ~  for lead-water and water- 
lead shields respectively. Although the two shields have 
the same thicknesses of lead and water, the buildup 
factor for the water-lead shield (case b)  is lower than 
that for the lead-water shield, with both approaching 
the infinite-medium buildup factor for the outermost 
material. The rapid decrease of the slope of the 
stratified slab curve is the result of end leakage and is 
more pronounced in Fig. 3.3a because the low-energy 
photons are back-scattered more readily by water than 
by lead, which tends to  absorb them. 

It is apparent from the preceding discussion that 
infinite-medium buildup factors will apply for most 
shields, including laminated shields. However, if the 
outer layer of a laminated shield is less than about 2 
mean free paths thick, the substitution of an infinite- 
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' Fig. 3.3. Comparison of Infinite-Medium Buildup Factors with Stratified-Slab Buildup Factors: (a) Lead-Water Slab; (b)  
Water-Lead Slab. Source IF  normally incident plane monodirectional gamma rays. (From refs. 58 and 59,) 
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medium buildup factor may be inadvisable, and other 
techniques should be applied (see next page). 

Formulas for Homogeneous Materials 

Several formulas have been developed to  represent the 
infinite-medium buildup factors determined for various 
elements and homogeneous materials, with the coef- 
ficients usually calculated by a best fit of the available 
data. Some of the more widely used functions are 
discussed below. There are many other possible forms 
of buildup factors, some of which are cited by 
Hubbell,6 but they are generally more complicated 
and less useful than the forms given here. 

Linear Form. - Probably the oldest formulas used for 
a buildup factor are the simple linear forms given by 

B(E,pR) = 1 -t pR (3.150) 

and 
IJ - Pa 

pa 
B(E,pR) = 1 -t - CIR, (3.151) 

where 

E = source energy, 

p = linear attenuation coefficient, evaluated 

pa  = energy deposition coefficient, calcu- 

R = distance to source, 

at the source energy E, 

lated at the source energy E, 

( p  - pa) /po  = a fitting parameter determined by Gold- 
stein6 ' from conservation of energy 
considerations. 

These particular linear forms of the buildup factor have 
the advantage of being simple, but they are not very 
good over a significant range. 

Taylor Form. - A frequently used form of the 
buildup factor is that of Taylor,62 written as 

-al(E)PR -a2(E)PR 
B(E,pR) = A e + (1 - A )  e 

(3.152) 

It is apparent that substitution of Eq.'3.152 into 3.149 
does not change the form of the kernel but merely 
generates two terms. Consequently, all available analyt- 
ical solutions for the uncollided flux can be corrected 
for the scattered flux by simply using modified attenua- 
tion coefficients represented by ( 1  -t cy, ) p  and (1 + a2)p  
and multiplying the respective terms by A and ( 1  - A ) .  

Addition of these two terms then gives the total dose. 
Values of A ,  c y 1 ,  and cy2 were given in Taylor's 

original report for a number of materials, and subse- 
quently coefficients for the energy absorption buildup 
factor for aluminum, tungsten, and lead and coeffi- 
cients for the dose buildup factor for uranium were 
published by Strobel.' 

Later Buscaglione and M a n ~ i n i ~ ~  published a rather 
complete set of coefficients for dose buildup factors, 
including those for ordinary, barytes, ferrophos- 
phorous, and magnetite concretes. The values for 
concrete are based on the buildup factors published by 
Walker and Grotenhuis.' Since the Buscaglione- 
Manzini data are so complete, covering all the point 
sources used by Goldstein and Wilkins,14 the dose 
coefficients are reprinted in Table 3D.1 in Appendix 
3D. 

Polynomial Form. - The use of a buildup factor given 
by a four-term polynomial capable of good accuracy 
became feasible when in 1958 Capo65 published a 
rather complete set of coefficients for many materials. 
The form of the buildup factor is 

3 

NE,@) = /3,(E) (@)" , (3.153) 

and Capo gives the coefficients /.l for several sets of 
energies, as well as coefficients for a bivariant fit which 
allows a set of /.l values to  be generated for any energy. 
Unlike all other formulations considered here, Capo's 
coefficients result in an expression that does not reduce 
to exactly unity for pR = 0; however, the values of the 
P o ' s  are extremely close to 1.  

A later set of coefficients for this form of the dose 
buildup factor was published by Buscaglione and 
Manzini66 for various concretes. Their values, based on 
the data of Walker and Grotenhuis: are reproduced in 
Table 3D.2 in Appendix 3D. 

Empirical Linear and Quadratic Forms. - By least- 
squares fits to the data of Goldstein and WilkinsI4 for 
various materials and to  the data of Walker and 
Grotenhuis' I for four types of concrete, Trubey6 
determined values of the dose coefficient A I  in the 
linear form of the exposure buildup factor given by 

n=o 

B(E,pR) = 1 + A , ( E )  p R ,  (3.1 5 4 )  

and the coefficients A 2  and b in the quadratic form 
given by 

B ( E , p R )  = 1 + A,(E)  p R  + b(E)(pR)' .  (3.155) 



Two sets of data were used, one for pR < 7 mean free 
paths, and another for p R  < 20 mean free paths. In the 
fitting procedure used, the results obtained for large 
values of the argument were better than those obtained 
for small values. With heavy elements, when the fit is 
from 0 to 20 or more mean free paths, a large error 
occurs in the fitting function at small distances such 
that the value of B as determined by Eq. 3.155 goes to 
zero or is negative. This limits the use of the quadratic 
form with these parameters to deep-penetration calcu- 
lations. 

Values of the coefficients A A * ,  and b are presented 
in columns 2, 4, and 5 in Tables 3D.3 and 3D.4 in 
Appendix 3D. The maximum errors shown in columns 3 
and 6 are those encountered over the fitted range. The 
error is reported either in percentage or as a factor 
indicated by the letter F. 

Berger Form. - A two-parameter dose buildup 
formula proposed by Berger6 and reintroduced by 
Chilton et al.69 has the simplicity of the linear form 
but fits the buildup factor data well over a long range. 
This formula is 

In an effort to  investigate the adequacy of the 
formula and to  make it generally useful, Trubey6 used 
a least-squares procedure to  obtain values of C and D 
for all the materials included by Goldstein and 
Wilkins’4 and the four types of concrete covered by 
Walker and G r o t e n h u i ~ , ~  ’ again using two sets of data 
corresponding to  /.LR < 7 and 20 mean free paths. These 
values are given in columns 7 and 8 of Tables 3D.3 and 
3D.4 of Appendix 3D, with the maximum error encoun- 
tered over the fitted range given in column 9. I t  was 
found that t h s  formula could reproduce the calculated 
buildup factor functions extremely well and had the 
advantages of being easily integrable over the various 
source regions and (unlike the Taylor form) resulting in 
two terms (unscattered and scattered) which have 
physical significance. Consequently, this form was 
highly r e ~ o m m e n d e d . ~  Other values for C and D were 
published by Rudloff7’ and by Chilton7 ’ for pR < 15 
and 10 mean free paths respectively. Chilton’s values 
are reproduced in Figs. 3.4 and 3.5 as functions of 
energy for various materials. It can be seen in Fig. 3.5 
that for several materials and certain energies the value 
of D is zero, which means that the Berger formula 
reduces to  the linear form. 
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Fig. 3.4. The Coefficient C for the Berger Form of the 
Gamma-Ray Dose Buildup Factor. (From ref. 71.) 
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Fig. 3.5. The Coefficient D for the Berger Form of the 
Gamma-Ray Dose Buildup Factor. (From ref. 71.) 

Formulas for Laminated Materials 

As pointed out above, buildup factors for laminated 
shields can usually. be represented by the buildup factor 
for the outer medium alone unless the outer layer is less 
than about 2 mean free paths thick, in which case a 
“laminated” buildup factor may be necessary. Several 
buildup factor formulas for such shields have been 
developed in recent years, some of which are discussed 
below. In all cases B, and B refer to  energy deposition 
(or absorption in the old nomenclature) and exposure 
buildup factors respectively. Subscripts 1 and 2 refer to  
the first and second layers respectively and i to  the ith 
material. Thicknesses that are given in mean free paths 
are denoted by x and those given in centimeters by t. 
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Bowman-Trubey Formula. - Based on their Monte 
Carlo studies of heat deposition in one- and two-layer 
lead slabs in water by a plane monodirectional beam, 
Bowman and Trubey" , 7 2  suggested that combinations 
of the Goldstein-Wilkins energy absorption buildup 
factors could be used in a relation representing the 
buildup factor for stratified slabs. This effective buildup 
factor is expressed by 

B , ( x l , x ~ ) = B U l ( x l  sec ~ J o )  

X BU2(x2 secf3,Eo) exp (-xz sec e )  

+ B,, [(xl + x z )  sec B,EoJ [ l  - exp(-x2 sece)] , 

(3.1 57) 

where 0 is the angle between the direction of the 
incident gamma ray and the normal to  the slab. 

Kalos Formulas. - K a l ~ s ~ ~  gives the following 
empirical formula for normally incident gamma rays on 
a layer of lead followed by a thick layer of water: 

B(x 1 J 2  1 = B2 (x2 1 

Bn (ni l~$ , (3.161) 
n = 2  i= l  , 

where the index IZ denotes the individual stratified 
slabs. 

Kitazume Formula. - Since Broder's formula does 
not take into account the final saturating buildup in the 
last layer, which should be approximately that of the 
last layer alone, Kitazume7' proposed that the differ- 
ence term in Broder's formula be multiplied by 
exp(-cuz,), where z ,  is the thickness of the shield 
following the nth layer measured in mean free paths 
and (Y is an empirical parameter that has to  be 
determined either by exact calculation or by experi- 
ment. With this, the Broder effective buildup factor for 
an intermediate slab denoted by the index n is given by 

For water followed by lead, he gives the formula: where 

B(x1 J 2 )  = B z ( x , )  

(P,/P)l B l ( X 1 )  - 1 

& ( X I )  - 1 (Pc/P)2 

z ,  = X I .  
r = n +  I 

Again by successive substitution, Eq. 3.162 can be 
transformed into an explicit expression for the overall 
buildup factor for the laminated shield: 

1 e-1.1x2 +- ( 1  -e-"') 

X [ B 2 ( x ,  + x2)  - Bz(x2)l  , (3.159) 

where p C / ~  is the ratio of the Compton scattering cross 
section to the total linear attenuation coefficient or 
total cross section. 

Broder Formula. - Broder et proposed the 
following formula for the effective buildup factor that 
takes all layers into account: 

where the index N corresponds to the outer layer of the 
laminated shield. Equation 3.160 is a recurrence for- 
mula which expresses the buildup factor for N layers in 
terms of the buildup factor for N - 1 layers and a 
difference term in buildup for the Nth layer. By a 
procedure of successive substitution, the following 
useful expression for the buildup is obtained: 

Harima-Nishiwaki Formula. - Harima and Nishi- 
~ a k i ' ~  recently proposed a formula that is physically 
justifiable, does not require determination of empirical 
parameters and is easy to  use. The effective exposure 
buildup factor (for either plane or point sources) 
formula is 

B@OJl +xz> =B,(Eo,x, +.z) + [B,(EOJl) 

-B2(Eo,xl)l exp [-2(c1-cl0)x21 B 2 ( 6 k ) ,  (3.164) 

where Eo refers to the initial energy, E is the energy 
corresponding to  F, and T i s  defined by 

- 
JOEo e - ~ ( ~ ) x 2  dE e-px2 , (3.165) 
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Table 3.3. Deviations of Exposure Doses Obtained with Various Buildup Factors 
from Those Obtained with Monte Carlo Buildup Factore 

Percent Deviation 

Lead-Water Shield Water-Lead Shield EO T 
(MeV) (mfp) ‘pb’T Harima- 

- 
Nishiwaki 

1 1 

2 

4 

6 

3 1 

2 

4 

6 

6 1 

2 

4 

6 

10 1 

2 

4 

6 

aFrom ref. 76. 

Harima- Kitazume Broder Kalos Broder Kalos 
Nishiwaki a= 1.7 a =  1.0 

0.25 
0.50 
0.75 

0.25 
0.50 
0.75 

0.25 
0.50 
0.75 

0.25 
0.50 
0.75 

0.25 
0.50 
0.75 

0.25 
0.50 
0.75 

0.25 
0.50 
0.75 

0.25 
0.50 
0.75 

0.25 
0.50 
0.75 

0.25 
0.50 
0.75 

0.25 
0.50 
0.75 

0.25 
0.50 
0.75 

0.25 
0.50 
0.75 

0.25 
0.50 
0.75 

0.25 
0.50 
0.75 

0.25 
0.50 
0.75 

+0.6 
-2.4 
-5.9 

-2.4 
-6.4 
-8.9 

+1.1 
+1.3 
-3.9 

-0.6 
-1.0 
-6.7 

-1.3 
-2.7 
-3.5 
+1.0 
+ O S  
-1.1 

-2.1 
-6.3 
-7.8 

-2.6 
-6.2 
-6.5 

-0.7 
0.0 

+0.8 

+3.6 
+3.7 
+1.3 

0.0 
-0.8 

0.0 

-0.4 
-2.8 
-5.0 
+2.4 

+0.9 
-0.8 

-0.7 
-1.4 
-2.3 

0.0 
+1.1 
+1.2 

-2.8 
-6.3 
-5.2 

-0.6 
-1.2 
-3.9 

-2.4 
-5.2 
-5.5 

-1.3 
+1.0 
+1.0 

-1.9 
-3.2 
-6.7 

-2.0 
-3.3 
-3.5 

-0.5 
-2.0 
-2.8 

-5.2 
-12.7 
- 14.6 

-7.8 
- 16.5 
-18.6 

-1.5 
-1.5 

0.0 

+1.2 
0.0 

-2.0 

-4.4 
-9.8 
-9.0 

-9.0 
-16.9 
-16.3 

0.0 
-3.3 
-0.9 

-4.0 
-5.6 
-6.0 

-6.3 
-7.8 
-7.3 

-12.3 
-18.5 
-17.5 

0.0 
-1.8 
-4.6 

-2.8 
-6.4 
-6.4 

-4.9 
-10.3 
-21.3 

-8.6 
-19.5 
-25.2 

-2.0 
-8.0 

-10.5 

-1.4 
-3.6 
-2.9 

-5.8 
-13.6 
-11.8 

-5.8 
-13.0 
-16.1 

-2.2 
-2.3 
-0.8 

+0.6 

-2.7 

-4.4 
-8.5 
-8.5 

+2.2 
-2.4 
-3.3 

0.0 
- 1.7 
-0.9 

-1.3 
-2.8 
-3.0 

-2.1 
- 3.4 
-3.1 

0.0 
-4.9 
-7.2 

-1.9 

-1.3 
0.0 

-1.4 

-4.1 
+1.7 
+1.9 

+2.4 
+3.2 
+1.9 

-1.2 
+1.1 
+0.4 

-1.4 
-1.4 
-0.7 

-0.5 
-1.2 
-1.2 

-3.0 
-0.4 
+0.9 

+1.2 
+2.4 
+3.0 

-3.7 
-2.3 
-1.6 

-1.2 
-2.6 
-2.1 

-4.9 
-7.1 
-4.0 

+3.3 
+3.4 
+0.9 

-3.2 
-0.8 
-0.9 

+0.6 

-0.8 

-4.2 
-4.5 
-1.8 

0.0 
+0.5 
+0.5 

-1.4 

+9.8 
+7.0 
+0.7 

+17.8 
+18.8 

+9.9 

+26.7 
+41.3 
+18.9 

t142.0 
+57.2 
+26.1 

+0.7 
0.0 
0.0 

+5.4 
+3.5 
+1.2 

+8.2 
+11.3 

+6.5 

+48.7 
+19.3 
+10.0 

-2.2 
-1.0 

0.0 

+3.0 
-0.6 

0.0 
+4.1 

0.0 
-1.5 

+12.1 
+12.2 

+5.6 

-0.8 
0.0 
0.0 

-0.8 
+2.9 
+1.5 

+3.6 
+2.2 
+3.1 

+8.4 
+8.6 
+5.1 

0.0 
-1.4 
-1.4 

-1.3 
-1.8 
+0.6 

-6.4 
0.0 

+2.4 

-13.9 
-1.1 
+2.4 

-4.8 
-4.3 
-2.2 

-8.0 
-6.4 
-2.5 

-14.7 
-6.7 
+1.9 

-12.8 
-2.7 
+0.4 

-3.7 
-3.1 
-0.8 

-2.4 
-5.1 
-2.1 

-7.4 
-2.2 
-1.0 

+14.3 
+16.8 
-2.4 

-4.0 
0.0 

-1.8 

-5.0 
-3.6 

0.0 

+5.2 
+7.8 
+4.3 

+24.2 
+25.0 
+13.2 

+2.6 
+0.7 
-1.4 

-3.1 
-0.6 

0.0. 

-5.2 
-4.2 
-1.0 

-16.9 
-8.5 
-2.0 

-2.7 
-3.6 
-2.2 

-7.0 
-7.5 
-3.7 

-19.7 
-12.9 

-4.2 

-20.0 
-13.2 

-5.2 

-5.9 
-5.4 
-3.3 

-9.7 
-11.5 
-6.9 

-22.5 
-20.4 
-11.9 

-15.1 
-13.7 

-8.9 

-7.6 
-5.8 
-3.5 

-7.6 
-10.8 

-7.6 

-18.4 
-17.9 
-11.0 

-16.3 
-15.9 
-11.2 

+5.2 
+2.8 
-0.7 

+3.6 
+3.5 
+1.9 

+8.4 
+0.9 

0.0 

-1.2 
-5.2 
-1.6 

-1.4 
-2.9 
-1.5 

-3.2 
-5.2 
-3.1 

-13.6 
-10.4 

-3.7 

-13.7 
-11.5 

-5.2 

-4.4 
-3.9 
-3.3 

-5.5 
-9.0 
-6.2 

-17.6 
-18.6 
-11.4 

-11.4 
-12.6 

-8.9 

-4.0 
-4.1 
-3.5 

-5.0 
-7.9 
-6.1 

-14.3 
-17.3 
-10.4 

- 12.6 
-13.9 
-11.2 



with the energy spectrum presumed to  be distributed 
uniformly from zero to  source energy E,. 

Table 3.3,  which was prepared by Harima and 
Nishiwaki, shows the deviation of the exposures calcu- 
lated with buildup factors from the various formulas 
compared with the Bowman-Trubey Monte Carlo 
results for monoenergetic gamma rays incident on 
lead-water and water-lead shields. I t  can be seen that 
the Harima-Nishiwaki formula gives the best agreement 
with the Monte Carlo results. 

3.8.2. NEUTRON REMOVAL CROSS SECTIONS 

The use of buildup factors in the attenuation func- 
tion, or kernel, for neutrons has not developed to a 
large extent in the United States, primarily because 
neutron interactions are much more complex than 
gamma-ray interactions, and consequently the uncol- 
lided neutron flux is not as easily determined as the 
uncollided gamma-ray flux. However, measurements a t  
the Oak Ridge National Laboratory Lid Tank Shielding 
Facility (LTSF) led to  the concept of a removal cross 
section averaged over source energies which can be used 
in a simple neutron kernel developed by Albert and 
Welton7 (see Section 3.8.3) to determine the attenua- 
tion of fission neutrons through shields that have a 
hydrogen density of at least about 6 g/cm2 in the 
outermost layer. Reactor shields nearlv always contain an 
outer-layer hydrogen density that is large and for many 
years neutron attenuation in such shields was predicted 
with the Albert-Welton kernel utilizing LTSF-type 
removal cross sections. In recent years the usefulness of 
removal cross sections which could be applied to  shields 
that contain less hydrogen than 6 g/cmZ in the outer 
layer has been recognized, and values for a few 
materials have been determined. Both types of removal 
cross sections are discussed below. 

Traditional Removal Cross Sections 

The LTSF  measurement^'^ showed that the insertion 
of relatively thin slabs of material between a fission 
source and a thick water shield gives an effect which 
can be correlated by a simple exponential attenuation 
factor that is characteristic of absorption processes 
alone. This behavior might not be expected since 
nonabsorption effects predominate in fast-neutron 
attenuation. However, the large thickness of water 
filters out the neutrons deflected by the sample, 
thereby effecting their complete removal. Therefore the 
effect of slabs of shield materials when followed by 
large thicknesses of hydrogenous material can be 
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described by an equivalent absorption cross section, 
called the “removal cross section.” 

An ideal way to  experimentally determine the validity 
of the concept would be to  use a plane monodirectional 
source of fission neutrons incident on a tank of water. 
For such a configuration the removal cross-section 
concept would be valid if the doses measured at the 
source distance z in water could be correlated by 

D , ( z )  = observed neutron dose  attenuated through 
a dis tance z of water, 

D 2 ( z )  = observed neutron dose  attenuated through 
a s l ab  of material of thickness  t (in- 
ser ted between source and water) plus  
water of thickness  Z, 

C = macroscopic removal c r o s s  sect ion.  
R 

In the actual experimental shielding facility where 
this concept was originally tested, the source was a 
finite isotropic disk rather than a plane monodirectional 
source. However, by making a few simple assumptions 
about the behavior of neutron penetration, an analog to  
Eq. 3.166 was derived and used in obtaining removal 
cross sections from experimental data.79 

Values of microscopic removal cross sections (uR) 
determined from the LTSF measurements for several 
elements and compounds are shown in Table 
3.4.78 , so-82  Empirical functions useful for interpola- 
tion in the experimental data have been derived by 
ZoIIer:’ 

z R / p  = 0 . 1 9 2 - O . ~ ~ ~  c m 2 / g ,  for 2 = < 8 , 

= 0.1252-o .565  cm2/g,  for 2 > 8 ; (3.167) 

where Z is the atomic number. Most of the macroscopic 
removal cross sections given in Table 3.5 were obtained 
with Eq. 3.167. 

It must be emphasized that the removal cross sections 
determined from LTSF experiments do not have a 
precise theoretical basis and should be viewed with a 
certain degree of suspicion. It has been demonstrated, 
for example, that in a homogeneous medium the 
removal cross section for oxygens4 is (0.75 * 0.05) 
barn rather than (0.99 2 0.10) barn as shown in Table 
3.4. It is also pointed out that the removal cross section 
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Table 3.4. Microscopic Removal Cross Sections of 
Various Elements and Compounds Measured 
at the ORNL Lid Tank Shielding Facilityarb 

Material uR (bams/atom) 
~ ~~~ ~~~ 

Aluminum 

Beryllium 

Bismuth 

Boron' 

Carbon 

Chlorine' 

Copper 

Fluorine' 

Iron 

Lead 

Lithium 

Nickel 

Oxygen' 

Tungsten 

Zirconium 

Uranium 

Boric oxide, B 0 

Boron carbide, B,C 

Fluorothene, C,F3C1 

Heavy water, D 2 0  

Hevimet (90 wt 7'0 W, 

2 3  

6 wt % Ni, 4 wt 70 Cu) 

Lithium fluoride, LiF 

Oil, CH2 

Paraffin, C,,H,, 

Perfluoroheptane, C 7F , 

1.31 f 0.05 

1.07 f0 .06  

3.49 k 0.35 

0.97 k 0.10 

0.81 kO.05 

1.2 k 0 . 8  

2.04 k 0.11 

1.29 f 0.06 

1.98 f 0.08 

3.53 kO.30 

1.01 k0 .05  

1.89 k 0.10 

0.99 f 0.10 

3.3fjd 

2.36 k 0.12e 

3.6 f 0.4 

4.30 k 0.41 
f 4.7 k0.3 

6.66 t 0.8 

2.76 k 0.11 

3.22 f 0.18 

2.43 50 .34  

2.84 f 0.11 

80.5 k 5 . 2  

26.3 kO.8 

may vary with sample thickness (the value for 
oxygen' obtained from the homogeneous-medium 
measurements increased from 0.72 barn at a distance 90 
cm from the source to 0.79 barn at a distance 140 cm 
from the source). There is really no reason to expect 
the removal cross section to  remain constant with 
sample thickness; however, the variation should not be 
very great up to  about 5 relaxation lengths. Another 
point that should be emphasized is that the traditional 
removal cross section for a material described here can 
be applied only when that material is used in conjunc- 
tion with a hydrogenous shield since hydrogen is 
required to  moderate and absorb the scattered neu- 
trons, as occurred in the experiments from which the 
removal cross sections were determined. 

I t  follows from the removal cross-section concept that 
the removal cross sections of elements in a series of 
slabs or mixed together should be additive; that is, the 
number of relaxation lengths becomes 

where the index i refers to  the various elements. This 
additive property has been generally accepted, even 
though some discrepancies have been noted, partic- 
ularly in regard to  compounds. 

Removal cross sections can be predicted by theory. 
Phenomenologically, the removal process can be con- 
sidered to be equivalent to  the total reaction rate minus 
the forward component of the scattering process. This 
suggests that an estimate of the removal cross section 
could be obtained from the transport cross section. As 
it turns out, C, Ctr for neutrons between 6 and 8 
MeV; therefore 

C ==x = c - x c O s o ,  R t r t s  (3.1 69) 

where 8 is the scattering angle in the laboratory frame 
of reference. 

Removal cross sections may also be estimated from 

aExcept where noted these values were taken from ref. 78. 
bA measurement not included here yielded a removal cross- 

CCross-section value determined from measurements behind 

dWeighted average of two values, 3.5 f 0.2 and 3.13 ? 0.25 

eFrom ref. 82. 
fAverage of two reported values, 4.3 2 0.4 and 5.1 2 0.4 

section value of 0.036 f 0.002 cm2/g for concrete (ref. 80). 

compounds of the elements. 

barns/atom (ref. 81). 

barns/atom. 

(3.170) 

where Ct is the average total macroscopic cross section 
between 6 and 8 MeV, and from 

C R / p  = 0.21 A - 0 . 5 8  , (3.171) 

where p is the density and A is the atomic weight. 
Figure 3.6 compares plots of measured values of Z,/P 
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n 
and Z t / p  at 8 MeV as a function of atomic weight. I t  
can be seen that a reasonably good fit to  the curve for 
A > 10 is obtained by Eq. 3.171. 

Removal Cross Sections for Hydrogen-Deficient Shields 

The traditional removal cross section as discussed 
above is, limited in application to  a shield configuration 
that has a hydrogen density of at least 6 g/cm2 in its 
outer layer. Recognizing the usefulness of a removal 

cross section that could be applied for shields that 
contain less hydrogen, Dudziak and Schmucker' 
performed a series of calculations to  investigate the 
effect on the removal cross section of varying the 
surface density of the hydrogen. Using a simplified P3 
approximation to the transport equation (as incorpo- 
rated in the P3MG1 code87), they calculated the 
transport of neutrons from a Po-Be source through lead 
followed by varying amounts of polyethylene in spher- 
ical geometry. They showed that removal cross sections 
for large polyethylene thicknesses approached the 

Table 3.5. Fast-Neutron Removal Cross Sections and Mass Attenuation Coefficients' 

Aluminum 
* Antimony 

Argon 
Arsenic 
Barium 
Beryllium 

Bismuth 
Boron 
Bromine 
Cadmium 

Calcium 
Carbon 
Cerium 

Cesium 
Chlorine 
Chromium 

Cobalt 
Copper 
Dysprosium 
Erbium 

Europium 
Fluorine 
Gadolinium 

Gallium 

Germanium 
Gold 
Hafnium 

Helium 
Holmium 

Indium 
Iodine 
Iridium 
Iron 

Krypton 
Lanthanum 
Lead 
Lithium 
Lutetium 
Magnesium 
Manganese 
Mercury 
Molybdenum 

13 
51 

1 8  
33 
56 

4 
83 

5 
35 

48 
20  

6 

58  
55 
17 

24 
27 
29 
66 
68 

63 
9 

64 

31 

32 
79 
72 

2 
67 

49 
53 
77 

26 
36 
57 
82 

3 
71 
12 
25 
80  
42 

2.699 
6.691 

5.730 

3.500 
9.013 
9.747 
3.330 
3.120 

8.648 
1.540 
1.670 
6.900 

1.873 

6.920 
8.900 
8.940 
8.562 
4.770 

5.166 

7.868 

5.903 

5.460 
19.320 
13.300 

7.280 
4.930 

22.420 

7.865 

6.150 
11.347 
0.534 

1.741 
7.420 

13.546 
10.200 

0.0293 
0.0136 
0.0244 
0.0173 
0.0129 
0.0678 

0.0103 
0.0575 
0.0168 
0.0140 

0.0230 
0.0502 
0.0126 

0.0130 
0.0252 

0.0208 
0.0194 
0.0186 
0.0117 
0.0115 

0.0120 
0.0361 
0.0119 

0.0180 

0.0176 
0,0106 
0.01 12 

0.1135 
0.0116 

0.0139 
0.0133 
0.0107 
0.0198 

0.0165 
0.0127 
0.0104 
0.0840 
0.0112 
0.0307 
0.0203 
0.0105 

0.0151 

0.0792 
0.0907 

0.0993 
0.0450 
0.1248 

0.1003 
0.1914 
0.0523 
0.1213 

0.0354 
0.0838 
0.0870 

0.0243 

0.1436 
0.1728 
0.1667 
0.1003 
0.0550 

0.0621 

0.0938 

0.1060 

0.0963 
0.2045 
0.1484 

0.1009 
0.0654 
0.2408 
0.1560 

0.0783 
0.1176 
0.0449 

0.0535 
0.1505 
0.1424 

0.1543 

0.0292 f 0.0012 

0.0717 f 0.0043 
0.010 i 0.0010 
0.0540 ? 0.0054 

0.0407 ? 0.0024 

0.020 I 0.014 

0.0194 IO.0011 

0.0409 I 0.0020 

0.0214 f0 .0009  

0.0103 fO.0009 
0.094 f0 .007  

"From ref. 83 .  

Neodymium 
Neon 
Nickel 
Niobium 
Nitrogen 
Osmium 
Oxygen 
Palladium 
Phosphorus 

Platinum 
Potassium 
Praseodymium 
Radium 
Rhenium 
Rhodium 
Rubidium 
Ruthenium 
Samarium 
Scandium 
Selenium 

Silicon 
Silver 
Sodium 

Stronium 

Sulfur 
Tantalum 
Tellurium 

Terbium 
Thallium 

Thorium 
Thulium 
Tin 

Titanium 
Tungsten 
Uranium 
Vanadium 

Xenon 
Ytterbium 
Yttrium 
z i n c  
Zirconium 

60 
10 
28 
41 

7 
76 
8 

46 

15  
78 
1 9  
59 
88 

75 
45 

37 
44 
62 
21 
34 

14 
47 
11 

38  

16 
73 
52 
65  
81 

90 
69 
50 

22 
74 
92 
23 
54 
70 
39 
30 
40 

6.960 

8.900 
8.400 

22.480 

12.160 

1.820 
21.370 
6.475 
6.500 

5.000 
20.530 
12.440 

1.532 
12.060 
7.750 
3.020 
4.800 
2.420 

10.503 
0.971 

2.540 

2.070 
16.600 

6.240 

11.860 

11.300 

6.550 

4.500 
19.300 
18.700 
5.960 

3.800 
7.140 
6.440 

0.0124 
0.0340 
0.01 90 
0.0153 
0.0448 
0.01 08 
0.0405 

0.0144 
0.0271 

0.01 07 
0.0237 
0.0125 

0.0100 
0.01 09 
0.0145 
0.0163 
0.0147 
0.0121 
0.0224 
0.0170 
0.0281 
0.0142 
0.0322 

0.0160 

0.0261 
0.0111 
0.0134 
0,0118 
0.0104 

0.0098 
0.0114 
0.0137 

0.0218 
0.0110 
0.0097 
0.0213 
0.0131 
0.0113 
0.0158 
0.0183 
0.01 56 

0.0861 

0.1693 0.0190 f 0.0010 
0.1288 

0.2432 
0.031 iO.002 

0.1747 
0.0493 

0.2279 
0.1533 
0.0812 
0.0498 

0.2238 
0.1810 
0.0249 
0.1777 
0.0941 
0.0676 
0,0818 

0.0681 
0.1491 
0.0313 

0.0407 

0.0540 
0.1838 
0.0837 

0.1238 
0.1111 

0.0898 
0.0981 
0.2120 0.0082 *0.0018 
0.1816 0.0091 iO.0010 
0.1267 

0.0599 
0 . 1 3 0 ~  
0.1001 
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Fig. 3.6. Removal Cross Sections per Unit Mass for Fission 
Neutrons as a Function of Atomic Weight. (From ref. 78.) 

asymptotic value of 0.1 16 k 0.01 cm-' (3.53 * 0.30 b) 
reported from Lid Tank Shielding Facility measure- 
ments with a fission source. It was also found that 
extrapolating the cross section curve back to a zero 
polyethylene thickness yielded a value that was very 
close to  the value of 0.0128 cm-' for lead alone 
reported by Price and Dum" on the basis of experi- 
ments with Po-Be neutrons. 

Dudziak performed later calculations" with better 
cross sections, more neutron energy groups and an SSP3 

approximation and reached essentially the same conclu- 
sions. The results of these later calculations are shown 
in Table 3.6. The macroscopic removal cross sections 
given in the table were fit to  within 1.4% by a 
least-squares procedure to  an analytical expression given 
bY 

XR ( t )  = 0.1 106 [ 1 - 0.9836 exp (-0.1 09t)l , (3.172) 

where t is the polyethylene thickness in centimeters. 
The Dudziak and Schmucker study86 included some 

calculations for an Ra-Be source so that the sensitivity 
of the removal cross section to  the source spectrum 
could be investigated. For comparable configurations 
the doses in the polyethylene differed by less than 9%, 
which indicates that the removal cross sections obtained 
with the Po-Be source could be applied for an Ra-Be 
source also. 
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Table 3.6. Effective Macroscopic Removal Cross Sections 
for Lead Followed by Various Thicknesses 

of Polyethylene (Po-Be Source)a 

Polyethylene Lead 
Thickness Removal Cross 

(cm) Section (cm-' ) 

3 
5 
7 
9 

15 
21 
25 
31 
35 
41 

0.0328 
0.0473 
0.0597 
0.0701 
0.0901 
0.0999 
0.1036 
0.1069 
0.1081 
0.1093 

aFrom ref. 89. 

In similar P3MG1 calculations for a fission source, 
Shure et aZ.90 determined removal cross sections for 
both iron and lead followed by polyethylene thick- 
nesses up to  50 cm. They used two cutoff energies, 3.02 
keV and 0.625 eV, in their dose calculations. The 
resulting microscopic removal cross sections, shown in 
Table 3.7, indicate that except for small polyethelene 
thicknesses the removal cross sections are relatively 
insensitive to  the cutoff energy chosen. Shure et  al. also 
found that the asymptotic values for iron and lead are 
in very good agreement with the experimental values of 
1.98 * 0.08 b and 3.53 2 0.30 b respectively obtained 
from Lid Tank measurements.'' For the case of no 
polyethylene present, the value for lead of 0.74 b 
(0.0243 cm-' ) obtained for the fission source is nearly 
twice that for the Po-Be source, which could be 
expected since the Po-Be spectrum is harder. The fact 
that the asymptotic removal cross sections are in 
agreement for the two different sources shows that the 
inelastic scattering in the lead apparently degrades the 
high-energy part of the spectra sufficiently to produce 
spectra that equilibrate about equally after traversing 
approximately 10 cm of polyethylene. 

As a secondary result, Shure et  aLy0 found that for 
polyethylene thicknesses > 30 cm, the fast (E > 302 
keV), epithermal (302 keV > E > 0.625 eV), and 
thermal (E  < 0.625 eV) neutrons contribute 83 ,6 ,  and 
11% respectively to  the neutron biological dose. 

Shure et al. also investigated the use of these removal 
cross sections for hydrogen-deficient shields in the 
technique that is normally employed in application of 
removal cross sections for large thicknesses of hydrog- 
enous shielding following the laminations of non- 
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n 
hydrogenous material. The normal expression used to  
estimate the neutron dose transmitted through r cm of 
hydrogenous material and several slabs of nonhydrog- 
enous materials is 

t i  J 

where Dcalc is the calculated dose for the hydrogenous 
material alone and Ni is the density, ui the removal 
cross section, and r i  the thickness of the i th nonhydrog- 

enous material. Equation 3.1 73 was applied to  three 
different shield configurations utilizing lead and iron 
followed by various thicknesses of polyethylene. Values 
of Dcalc were obtained from P3MG1 calculations and 
values of ui are those listed in Table 3.7. A comparison 
of the resulting dose rates with dose rates obtained with 
a complete P3MG 1 transport calculation (see Table 3.8) 
showed that the frequently used design technique 
exemplified by Eq. 3.173 can provide good estimates of 
the dose rates when the removal cross sections for 
hydrogen-deficient shields are used. 

Table 3.7. Effective Microscopic Removal Cross Sections for Iron and Lead Followed 
by Various Polyethylene Thicknesses (Fission Source)' 

Removal Cross Section (barn) 
Polyethylene 

Thickness Iron Lead 

(cm) E, = 302 keV E ,  = 0.625 eV E,  = 302 keV E,  = 0.625 eV 

0.76 0.6 1 0.88 0.74 0 
1 
2 
5 

10 
15 
20 
25 
30 
40 
50 

0.94 0.78 1.17 1 .oo 
1.08 0.91 1.41 1.22 
1.37 1.24 1.92 1.74 
1.66 1.60 2.47 2.36 
1.84 1.79 2.83 2.77 
1.91 1.89 3.06 3.03 
1.95 1.95 3.20 3.19 
1.97 1.97 3.29 3.28 

1.99 l/9 9 3.41 3.41 
1.99 1.99 3.37 3.37 

'From ref. 90. 

Table 3.8. Comparison of Dose Rates Obtained with Transport 
Calculation and Removal Cross Sections (Fission Source)' 

Ratio: (Dose Rate)t,/(Dose Rate), 

1.375 in. Fe 
8.0 in. Pb 

Polyethylene 0.5 in. Fe 2 in. Fe 
4.0 in. Pb 6.0 in. Pb 

(cm) 0.5 in. Fe 0.5 in. Fe 
Thickness 

E, = 302 keV E ,  = 0.625 eV E, = 302 keV E ,  =0.625 eV E ,  = 302 keV E ,  = 0.625 eV 

0.92 0.82 0.94 0.96 
1.07 

0 

1.07 
5 

1.06 
10 

1.06 1.09 1.03 0.99 1.03 
1.05 

15 
1.06 1.03 1.01 1.03 1.04 

1.03 
20 

1.03 1.03 1.03 1.01 1.03 25 
1.03 1.03 1.02 1.03 1.03 1.02 

1.03 
30 

1.03 
35 

1.02 1.02 1.03 1.03 1.04 
1.03 

40 
1.02 1.03 1.02 1.03 1.02 

1.04 
45 

1.04 1.03 1.03 1.03 50 1.03 

0.92 0.95 
1.08 1.13 1.05 0.91 1.02 
1.08 1.12 1.05 0.98 1.02 

1.03 1.03 1.03 1.03 1.04 

'From ref. 90. 



3.8.3. ALBERT-WELTON NEUTRON KERNEL 

The preceding section discusses how removal cross 
sections can be used to  determine the attenuation of 
neutrons through the nonhydrogenous inner layer of a 
shield providing the outer layer is hydrogenous. Albert 
and Welton7 developed a semi-empirical theory of 
neutron attenuation based on removal cross sections 
which provides a simple method for calculating the 
attenuation of fission neutrons through the complete 
shield. Basic to  the Albert-Welton model is the assump- 
tion that any neutron collision with hydrogen has the 
effect of an absorption. This, in effect, neglects the 
buildup of scattered neutrons which have undergone 
only small-angle scatterings by hydrogen. Inelastic 
scatterings with heavier nuclei are also regarded as 
absorptions because of the characteristically large en- 
ergy loss. Other collisions are mainly small-angle elastic 
scatterings within the forward peak of the angular 
distribution, which amount to virtually no collisions. 
Attenuation through the materials in the shield are 
described in terms of removal cross sections, with the 
removal cross section for hydrogen taken to  be its 
energy-dependent total cross section. The removal cross 
sections for the heavier nuclides are taken to  be 
empirical energy-averaged removal cross sections such as 
the traditional removal cross sections described above.* 

The Albert-Welton formulation for fission neutrons 
from a plane monodirectional source that penetrate 
through a mixture of water and heavy materials is given 
by 

where 

@(r) = number flux a t  a dis tance r from the 
source, 

C = macroscopic removal c ross  sect ion of 
ith element (other than hydrogen), 

fi = volume fraction of ith nonhydrogenous 
material, 

Ri 
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S ( E )  dE = fraction of f i ss ion  neutrons at E i n  
interval dE for a total  source of 1 
f iss ion cm-’ sec-’ ,  

CJE) = energy-dependent total macroscopic 
c ross  sect ion for hydrogen. 

The proportionality constant included in the original 
Albert-Welton derivation has been removed from the 
inequality 3.174 to  avoid the implication that the 
actual number flux can be computed from this. 

Integration of the inequality 3.174 yields the original 
Albert-Welton kernel for the hydrogenous portion of 
the shield, which is included in the first set of brackets 
of the following equation: 

r 1 
x exp 1 - 

(3.175) 
where 

f, = volume fraction of water, 

,O 

R i  

C = removal c ross  sect ion of oxygen, 
= removal c ross  sec t ion  of nonhydrogenous 

materials other than the  oxygen i n  the 
water. 

Although the derivation was for a plane source, Eq. 
3.175 holds for a point source when multiplied by the 
geometric attenuation factor 1/4nrz and the integral of 
S(E) is normalized to 1 fission/sec. The equation is also 
valid when slabs of heavy material are laminated with 
the water. A minimum of about 50 or 60 cm of water is 
usually required between the dose point and the last of 
the heavy materials (whether as slabs or in a mixture) in 
order to  comply with the limitations of the removal 
cross-section concept. 

Based on more recent experimental results, Casper’ 
evaluated new constants for the Albert-Welton kernel. 
The result for a point fission spectrum source is 

47rr2 D(r) = 2.78 x lo-’ (f,~)’,~~’ 

*In recent years, other kernels similar to the Albert-Welton 
kernel have been developed to use the removal cross sections for 
hydrogendeficient shields. 

where D(r) is the neutron dose r cm from the source in 
(rads/hr)/(neutron/sec). When shield materials are in- 
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serted between the water and the fission source, Eq. 
3.190 is multiplied by 

r 1 

to  obtain the neutron dose at the shield surface.* 
The Albert-Welton kernel is especially useful in the 

following two applications: 
1 .  It can be used to correct measured or calculated 

data when small changes are made in the heavy 
elements of a shield. For example, suppose that a lead 
layer and a water layer surround a point source. I f  the 
lead layer is increased and the water thickness remains 
the same, the new dose rate will be given by 

where 

2 = removal c r o s s  sect ion for lead,  

r2  = new dis tance  f r o m  source = r + t ,  
D z ( r z )  = new d o s e  rate,  

r l  = original dis tance,  
D ,  ( r , )  = original d o s e  rate. 

R 
t = change in lead thickness ,  

It will be noticed that the assumption is made that the 
water thickness (and its effect) remains unchanged. 
Consequently, the dose rates are evaluated at different 
positions. 

2 .  It can be used to  correct results obtained for one 
hydrogenous medium so that they apply for another 
hydrogenous medium. The basic assumption is that the 
hydrogen effect remains constant for a given “hydrogen 
length,” with the effects of other elements accounted 
for on the basis of removal cross sections. Thus the 
hydrogen attenuation kernel in one medium is set equal 
to the hydrogen attenuation in the other, giving 

C r  ‘ R l r l  
477ri D 2 ( r 2 )  e R 2  = 4nr; D l ( r l )  e , (3.178) 

*A serious shortcoming of this method is that the dose due to 
secondary gamma rays produced by neutron captures in the 
shield cannot be calculated. A significant extension of removal 
theory was effected by Spinney and others when the energy- 
dependent removal cross section concept was combined with 
diffusion theory. This technique is far more powerful than the 
removal concept alone since in addition to the neutron dose, 
detailed flux distributions can be calculated throughout the 
shield, thereby providing the source information for the 
secondary gamma-ray problem. A separate section is devoted to 
this combination removal-diffusion method (see Section 3.9). 

with the constraint, to  ensure the equivalence of the 
hydrogen effect, of 

(3.179) 

where 

p 2  =hydrogen densi ty  in medium for which 
D2 ( r z )  is unknown, 

p1 = hydrogen density in reference medium 
for which D ,  ( r l  ) is known, 

X R 2  = removal c r o s s  sec t ion  for a l l  e lements  
except  hydrogen in t h e  medium being 
analyzed, 

2 ,  = density-corrected removal c r o s s  sect ion 
for a l l  elements except  hydrogen in the 
reference medium. 

Combining t h e  above equations y ie lds  

x R r 2 )  . (3.180) x e x p  (x, -- pzr2 

PI  

A word of caution is appropriate here. The above 
equations represent a simple model of rather complex 
phenomena, and rather large errors are possible. 

3.8.4. METHODS FOR OBTAINING KERNELS 

Kernels have been obtained by a variety of tech- 
niques. Some insight in their interpretation and use is 
obtained if they are classified according to  the method 
used in  their determination, namely: experiments, 
transport calculations, and analytical models. 

Experimental Kernels 

The experimental (empirical) kernel may be tabulated 
data from an experiment or it may be implicit in a 
semiempirical model such as the Albert-Welton formu- 
lation, which involves the use of an experimentally 
determined removal cross section. 

Many empirical kernels have been based on the dose 
rates measured in the ORNL Lid Tank Shielding 
Facility or similar experimental facilities. Since such 
data are obtained for a finite source, in the case of the 
LTSF a disk source, the need arose t o  develop 
techniques for converting the measured attenuation 
functions to more basic data such as point source 
kernels. Assuming that all effects are additive (that is, 



that the problem is linear), it was possible to  derive 
certain source geometry transformations for homogene- 
ous media without specifying the form of the attenua- 
tion kernels. The applicability of the transformations 
depends upon the existence of a unique kernel, which is 
assured only for a truly homogeneous medium but 
which is nearly satisfied for many problems. The 
applicability also depends in most cases on the avail- 
ability of sufficient data to  enable evaluation of infinite 
series. B l i ~ a r d ~ ~ . ~ ~  derived many of the most com- 
monly used transformations, some of which are repro- 
duced in Appendix 3E. 

Kernels from Transport Calculations 

Kernels have been obtained from transport calcu- 
lations employing several techniques. Moments method 
codes, for example, have been used to  produce not only 
gamma-ray buildup factors but also neutron attenuation 
kernels. Such kernels for many materials have been 
tabulated by Krumbeing4 as the differential energy flux 
or dose rate as a function of distance from a point 
fission or monoenergetic source in an infinite medium. 
These and similar kernels can be incorporated in 
point-kernel codes such as the QAD code," which is 
used in space reactor shield designs (see Appendix 3B 
for description of code). 

Neutron kernels for concrete are available from 
Monte Carlo transport calculations performed by Clark 
et al. for monoenergetic beams of neutrons normally 
incident on slabs of ordinary concrete and also on a 
semi-infinite medium (half-space) of concrete. The 
neutron energies used were 0.7, 1.2, 2,  3, 4 ,  6, 8 ,  10, 
12, and 14 MeV. The density of the concrete was 
assumed to  be 2.43 g/cm3, and its composition, other 
than its water content, was representative of that given 
for ordinary concrete 01 in ANL-5800 (ref. 97). The 
resulting dose attenuation curves are shown in Figs. 
3F.1 through 3F.10 in Appendix 3F. 

In addition to  being useful directly, these results can 
be helpful in adjusting neutron attenuation data" that 
have been obtained for an infinite concrete medium SO 

that the infinite-medium data can be applied to  finite 
systems. A simple adjustment is possible since after 1 or 
2 relaxation lengths the penetrating characteristics, i.e., 
the relaxation length, of neutrons in an infinite medium 
of concrete should differ very little from those of 
neutrons in a semi-infinite medium. Therefore such 
data, which in all other respects appear to  be appro- 
priate for application to  a particular situation, might be 
fairly well adapted to  a finite system by correcting the 
data in proportion to the ratio of the curve for the 
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semi-infinite medium (dashed curve) to  the curve for 
the slab configuration (solid curve) at the proper 
penetration distance and energy. 

Discrete ordinates transport calculations which 
produced neutron attenuation data for concrete as a 
function of both incident neutron energy and incident 
angle were made by Schmidt and Roussing9 with the 
adjoint mode of the ANISN code. Their results, 
reproduced in Appendix 3G, include the secondary 
gamma-ray dose. The importance of the secondary 
gamma rays can be seen from the figures. The results 
are given as dose equivalent, which is the quantity 
needed in radiation protection calculations. 

Other useful neutron results were calculated by Allen 
and Futterer,' O 0  who determined by Monte Carlo 
methods the ,attenuation of the multicollision dose in 
the materials listed in Table 3.9 due to  monoenergetic 
neutron beams incident at various angles. The neutron 
energies assumed were 5,  3, 2 ,  1, and 0.5 MeV, and the 
results are plotted in Figs. 3F.11 through 3F.15 in 
Appendix 3F. In order to  use these curves, the 
multicollision dose (rate) must be known at the inner 
surface of a slab of one of these materials due to  
neutrons incident in a broad beam at an angle (or angle 
band) and energy (or energy band) close to  the angle 
and energy for which the attenuation data are given. 
The attenuation factor appropriate to  the material, 
thickness, energy, and angle is read from the curve, and 
the incident dose multiplied by that factor should 
approximate the dose from neutrons which have pene- 
trated the slab. 

Analytical Kernels 

Analytical kernels, those which can be identified 
directly from relatively simple models and used in Eq. 
3.145 to  obtain solutions to  more complex problems, 
can exist in many forms. For example, in computing 
the uncollided flux, the analytical kernel is simply 
(e-'tR/47rRZ) for a homogeneous medium. The para- 
graphs which follow present a few additional examples. 

Single-Scattering Model. - The Boltzmann equation 
may be formulated in a Neumann series with the 
angular flux given for a one-velocity problem as: 

(3.181) 

(3.183) 



Table 3.9. Compositions of Materials Used 
for Neutron Transmission Calculations‘ 

Density Compo sition 

(Idcm3) Element Atorns/cm Ma teri a1 3 

~~~ 

Borated polyethylene 0.97 H 

(8 wt 70 B,C) 

Water 

Concrete 

C 

“B 

1.00 H 

0 

2.26 H 
0 

A1 
Si 

Nevada T e s t  Site 1.15 H 
soil (dry) 0 

A1 
Si 

Nevada T e s t  Site 1.25 H 
s o i l  (100% saturated) 0 

A1 
Si 

x l o z 1  

76.80 

39.20 

0.658 

2.67 

66.90 

33.45 

13.75 

45.87 

1.743 

20.15 

8.553 

22.68 

2.014 

9.533 

16.87 

27.00 

1.976 

8.963 

nFrom ref. 100. 
bSeveral calculations made for pure polyethylene slabs (p = 

0.925 g/cm3) up to 6 in. thick yielded approximately the Same 
neutron transmission results as those for the borated poly- 
ethylene. 

where S(rT6) is the source density, Qo is the uncollided 
angular flux, is the singly scattered angular flux, and 
@,n is the angular flux of particles which have suffered 
exactly m collisions. There are a few situations when 
the series converges in just a few terms, usually when 
the important scattering region is a fraction of a mean 
free path thick. However, the full implementation of 
the technique is rarely attempted .with most practical 
applications involving only the uncollided flux Qo 
and/or the singly scattered flux Ql . Calculations of 
single scattering in air for short distances have been 
particularly useful.” ’ 

Variations on this method include the extended single 
scatter model which treats C,QI as the source and 
further scattering by a buildup factor.’02”03 Com- 
puted values of C,Q0 may also be used as a first-colli- 
sion source in Monte Carlo calculations to  reduce the 
variance by eliminating the randomness in the first- 
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collision distribution and in small-source two-dimen- 
sional discrete ordinates calculations’ to  cope with the 
ray effects. In the latter case the source becomes 
distributed throughout space rather than being located 
at a point. The particle flow from this source is 
distributed in angle, which is easier t o  treat. 

Last-Flight Kernels. - Another useful technique is t o  
compute the transport across a void by treating the 
leakage from a surface as a source. A “last-flight’’ kernel 
is used to  describe the point-to-detector transport 
across the void, and the total answer is obtained b y  
integration over the entire surface. Thus the flux 
density may be computed at  the center of a duct,  room, 
or crew compartment by integrating over the walls and 
computing the transport from the walls to  the point of 
interest. Moteff used this technique in his “two- 
component” method.’ 0 4 , ’  O s  With this model there is a 
narrow beam component, much like a removal flux 
density, t o  be integrated over the source region, and a 
wide beam or diffusion component to  be integrated 
over the shield surface, and the two components are 
summed to  obtain the flux density at a distant point. 

Integrations of the shield leakage calculated by one- 
and two-dimensional discrete ordinates codes have been 
described by Cramer and Solomito’06 and by Lind- 
strom and Wilcox.’ 

Monte Carlo Variance Reduction. - Analytical ker- 
nels may be used to  reduce the variance of Monte Carlo 
calculations in several ways. The variance per case his- 
tory can be reduced by replacing any randomly sampled 
quantity by the “expected value.” For example, a com- 
puted expected value, often called statistical or next- 
event estimation, is a common technique. Amster and 
Cast’ O 8  applied it by computing the neutron spatial 
distribution analytically for about four collisions in 
their Monte Carlo code. Berger and Doggett’” com- 
puted all the spatial portion analytically and the rest by 
Monte Carlo in their solution for a gamma-ray transport 
problem. Cramer et al.’ ’ used analytical kernels for 
the neutron transport in air of keV neutrons to  replace 
the time-consuming Monte Carlo treatment. This tech- 
nique has also been implemented in the AIRTRANS 
code’ I which uses a kernel from 150-keV t o  thermal 
energy. 

Another example of the use of analytical kernels in 
Monte Carlo calculations is in the choice of importance 
function. It is generally necessary in solving shielding 
problems by Monte Carlo to use importance sampling 
(see Section 3.5). This permits computer machine time 
to be used efficiently by sampling the portions of phase 
space which contribute significantly t o  the answer 
sought. A systematic approach is to  use an appropriate 
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Fig. 3.7. Schematic of Disk Source. 

analytical function as the importance f ~ n c t i o n . ~  
Bendall and McCracken' * used the Spinney method 
adjoint kernel for this purpose. Armstrong and 
Stevens113 used the first term of a Neumann series 
representation of the value function. That is, their V o  
importance function is the expected contribution to the 
desired answer made by a particle emerging from a 
collision. 

3.8.5. APPLICATION OF POINT KERNELS TO DISK 
AND RECTANGULAR SOURCES 

Sometimes solutions to  shielding problems can be 
reasonably approximated from attenuation data for a 
disk or rectangular source and a slab shield. These 
simple plane source problems are amenable to  analytic 
or numerical solution by integrating a point kernel over 
the source area as illustrated by Eq. 3.145. The results 
when tabulated or plotted are directly usable in 
practical applications. 

In the examples given below it is assumed that the 
problems are gamma-ray problems, but the same tech- 
niques would apply for neutron problems if the buildup 
factors are set equal to 1 and the macroscopic neutron 
removal cross section C, is substituted for the gamma- 
ray linear attenuation coefficient p. When applied to  
neutrons, it is assumed that the outer layer of the shield 
contains an adequate amount of hydrogen and that the 
attenuating effect of the hydrogenous material is 
properly included. 

Disk Source. - Consider, for example, a detector 
shielded from a plane disk source that is uniformly 
emitting S photons cm-2 sec-' isotropically in 4n 
steradians (see Fig. 3.7). Applying the point kernel as 
given by Eq. 3.146 except for the inclusion of the un- 
collided flux-to-dose (rads/hr) conversion factor C(E)= 

5.767 X lo-'  pat(E) E/p,, the unscattered dose rate 
along the disk axis is 

(3.1 84) 

where z is the distance from the disk to  the detector. 
Equation 3.184 can be transformed to  

(3.l85) 

where y E pt sec 8. When integrated, Eq. 3.185 
becomes 

where El  is the exponential integral function* of the 
first order and is defined by 

[Equation 3.186, as well as the equations given below 
for computing uncollided doses, can be used to  deter- 
mine the total dose (uncollided + scattered) by using 
the Taylor form of the buildup factor (see Section 3.8.1 
for a description of this procedure)]. 

*Plots of this function are given in Appendix 3H. 



For the case of an isotropic flux at the source 
plane, which is equivalent to  the angular flux 

@o * @(E) =-, 
4n 

the unscattered dose is 

r ( p t , r o / z )  = G ( E ) ~ @ ( ~ ) e - ~ f S e c e  d 6  S ’  (3.188) 

where dfi, is the solid angle subtended by the differ- 
ential area (2nrdr). This expression can be rewritten as 

which integrates to 

where Ez is the exponential integral function of the 
second order. In general, 

E,,@) = x 
Y 

The positive partial current J; at the source plane 
corresponding to  the isotropic flux condition is given 
by 

(3.190) =I1?! cos0  2nd(cos0)=--, @O 

4n 4 

where ii is a unit vector normal to the source plane. 
Therefore if the positive partial current is known, 4J; 
must be substituted for a0 in Eq. 1.89. 

In general, for the cos” 8 angular distribution in the 
forward direction, 

(n + I )  @in COS’? o 
2n @@) = (3.191) 

*See Section 5.1.1 in Chapter 5 and Section 2.1 of Chapter 2 
for a discussion of fluses. currents, and sources. 
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where @gn = I,, @(fi)dfi is the 2n total flux and n = 0 
corresponds to the isotropic flux field. Equation 3.1 91 
is substituted into Eq. 3.188 and the integral is 
evaluated, yielding the following expression for the 
unscattered dose: 

En +2 . (3.192) - 

For the off-axis position at  a distance p measured 
perpendicularly t o  the disk axis (see Fig. 3.7), integra- 
tions must be done numerically. Hubbell et aL’ l 4  

integrated an expression similar t o  Eq. 3.184, the 
isotropic source case, for off-axis positions and tabu- 
lated the results in terms of the parameters pt, r o / z ,  and 
p / r o .  These results are shown in Table 31.1 of Appendix 
31. The quantity tabulated is 4nr(pt ,ro/z ,P/ro) /S  G(@, 
which is the same as 4nQ0(p/r0)/S, where @“(p/ ro )  is 
the uncollided flux a t  p/r,. 

determined the data 
for an isotropic flux. The results are given in Table 31.2 
of Appendix 31 as 2r(pt , rO/z,p/r~) /@, G(E), which is 
the same as 2a0 (p /rO) /Qo.  

Certain circular aperture and disk source configura- 
tions to  which these results might be applied are shown 
in Fig. 3.8. 

Rectangular Sources. ~ A solution was developed by 
Hubbell et al. ’ for the uncollided flux a distance z 
from a plane isotropic rectangular s0urce.t Expressed as 
the product of separable source and geometry func- 
tions, the uncollided flux is given by 

In a similar manner Trubey’ 

2 n + 1  
2 

Qo(a,b)  = ~ gn pn(a,b> , (3.193) 
n=O 

where g,* and p,(a,b) are Legendre coefficients of the 
source and geometry functions respectively. 

If a = H / z  and b = W / z ,  where H and W are the height 
and width of the source plane (see Fig. 3.9), then Eq. 
3.193 gives the flux at  the corner position, that is, the 
flux at  a distance z along the normal to the corner of 
the rectangular source. I t  follows that using the 
half-height and half-width gives one-fourth of the flux 

TThe application of the work of Hubbell et a/. to rectangular 
ducts, which is the special case of a zero shield thickness, is 
described in Section 5.1.1 in Chapter 5. 
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at z along a normal to  the center of the source plane. 
The Legendre coefficient of the source function is 

g, = S_', g(pt, cos e) q c O s  e) d(cos e) , (3.194) 

where g(pt,cos 0) represents the angular flux at the 
source plane for the case of a slab shield of thickness 
f(z 2 t )  located between the source and the detector at 
a distance z from the source; that is, 

I e - i i t / c o s e  
g(pt,cos 8) = . (3.195) 

47T cos 8 

SEMI-INFINITE MEDIUM 

ISOTROPIC EXTENDED SOURCE 

Substituting Eq. 3.195 into Eq. 3.194, Hubbell et al. 
evaluated gn and p n  numerically and solved Eq. 3.193. 
The results for a corner position (a = H/z ,  b = W / z )  are 
given in Table 31.1 of Appendix 31 as 4nr/S G(E), or 
4a0/S, in terms of the parameters pt, a, and b .  

numerically evaluated 
the equivalent of Eq. 3.193 for an isotropic flux (cosine 
distribution of the angular current), that is, for 

In a similar manner Trubey' 

a e - p t / c o s  e 
4n 

(3.1 96) g(pt,cos e) = O 

i-14 4 'CIRCULAR 
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ORNL-DWG 67-42750 

PLANE ISOTROPIC 
CIRCULAR D I S K  
SOURCE 

PLANE 
ISOTROPIC 
EXTENDED 

Fig. 3.8. Some Circular Aperture or Disk Source-Shield Configurations to Which Point Kernels Are Applicable. (From ref. 114.) 
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ORNL-DWG 67-42751 3.8.6. ADVANTAGES AND LIMITATIONS 
OF KERNEL METHODS 

Clearly kernel methods remain important in shielding 
technology. With them results are usually obtained 
cheaper and faster than by full-blown transport calcula- 
tions and consequently they will continue to  be used 
for quick estimates, for checks of transport code 
results, and for engineering parametric studies. How- 
ever, Monte Carlo or the other sophisticated transport 
codes should be used in the final design stages. 

The danger in using a kernel method arises when the 
problem has complexities which cannot be accounted 
for by the kernel. The kernel, basically, is the solution 
for a differential source under prescribed conditions 
such as an infinite homogeneous medium and when the 
application departs significantly from the specified 
conditions, great errors are possible. I t  must be kept in 
mind that a kernel technique is intrinsically a ray- 
analysis technique, and if the radiation has streaming or 
short-circuiting paths, the kernel result may be a serious 
underestimate. In addition to  the obvious breakdown of 
the simple kernel methods when applied to  multi- 
layered geometries and irregular configurations (unless 
very special kernels are used), breakdown of the 
method will occur when dose rates away from a surface 
are desired or when scattering off.external surfaces or 
from lateral shields become important. 

The breakdown of kernel methods when applied to  
the complicated geometries of nuclear rocket designs, 
such as the design shown in Fig. 3.10 (ref. 117), has 
been experienced by several groups. Capo, Stephenson, 
and Magaw,' ' for example, used their KAP-V kernel 
code to  predict the gamma-ray dose rate for the NRX 
series reactors and found that in some locations the 
predictions were a factor of 10 lower than correspond- 
ing measurements. On the other hand, Soltesz et al.,' ' 
using the same code for calculations of a rocket reactor 
assembly and internal shield tested at the PAX-E5 
critical assembly, found that the code gave results that '  
were in good agreement both with the measurements 
and with discrete ordinates and Monte Carlo calcula- 
tions. 

Kernel codes using the extended single-scattering 
model have been applied with success for rocket 
geometries having large hydrogen volumes (both liquid 
and gaseous) and shadow shields. Warman' used such 
a code for a lightly shielded engine and obtained a value 
of 13,500 rem at the top of the tank, which compares 
favorably with a value of 10,000 rem computed by the 
Monte Carlo method. From these examples it must be 
concluded that while kernel methods may give good 

I 
1 2  __I 

Fig. 3.9. Schematic Demonstrating Use of Corner Position of 
a Rectangular Source to Calculate Dose at an Arbitrary Position 
by Point Kernel Techniques. 

A 

These results for a corner position are given in Table 
31.4 of Appendix 31 as 21'/Q0 G(E), or 2Q0 /ao, which 
is the same quantity tabulated for the disk source in 
Table 31.2. For the case of a square the dose will be 
slightly greater than that from a disk of radius W. 

Although these results relate directly to the response 
of a detector in a corner position, they are also 
applicable to  any arbitrary position lying within the 
projection of the source plane. It is obvious from Fig. 
3.9 that the dose at the detector is 

z z  z z 

,- . (3.197) 
+ r.4 z 
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Fig. 3.10. Nuclear Rocket Geometry. (From ref. 117.) 

results for a complicated geometry, underestimates or 
overestimates of shielding requirements are possible and 
the use of kernel techniques in complex situations 
should in general be avoided. 

As pointed out above, kernel methods also tend to  
break down when dose rates away from a shield suiface 
are desired. This type of difficulty can be experienced 
when a kernel method is used to  calculate the gamma- 
ray dose from the surface of a lead shipping cask for 
spent fuel elements. Near the surface, the configuration 
is fairly representative of an infinite medium, and thus 
good answers for the dose should be obtained there. 
But for a point further removed, the detector views a 
truly finite configuration and the use of infinite- 
medium buildup factors will overestimate the dose. 

Table 3.10 shows a comparison by Solomito and 
Claiborne’ between the simple kernel method (QAD 
code) and a two-dimensional discrete ordinates calcula- 
tion (DOT and SPACETRAN codes) at various points 
off the surface of a typical shipping cask (7.6-in.-thick 
lead shield). The column identified as “Kernel” gives 
the kernel method results normalized to the discrete 
ordinates results at the surface. The comparison shows 
that good answers were obtained by the kernel method 
near the surface (less than about 3 ft away), but that at a 
point 25 ft  away, the kernel calculation overestimated 
the dose by more than a factor of two. 

In general, the degree to  which the kernel method 
results will vary from discrete ordinates or other 
transport methods will depend on the angular distribu- 
tion of the leakage current from the surface. Unfortu- 
nately, this distribution cannot be easily determined 
and will depend on the source configuration and the 

Table 3.10. Comparison of Gamma-Ray Doses Calculated 
by Kernel and Discrete Ordinates Methods for Points Off 

the Surface of a Lead Shipping Casku 

Distance from Gamma-Ray Dose (Arbitrary Units) 

Surface (ft) Kernel Discrete Ordinates 

0.1 0.81 
0.4 0.65 
0.8 0.5 1 
1 .o 0.46 
1.5 0.36 
3.0 0.23 

25.  0.016 

0.76 
0.65 
0.49 
0.44 
0.35 
0.20 
0.0072 

UFrom ref. 121 

geometry and scattering properties of the attenuating 
medium. Consider, for example, the simple case of a 
shielded volumetric source giving rise to leakage from a 
plane surface but within a cone bounded by eo (see Fig. 
3.1 1). Assume that the angular flux is uniform over the 
surface and is given by a@), where /J is the cosine of 
the angle measured from the normal. Then the variation 
of the flux at the detector position D, as a function of 
the size of the source aperture bounded by Oo(po = cos 
e o ) ,  can be described by 

(3.198) 

(3.1 99) 
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Fig. 3.11. Plane Geometry Source and Shield Bounded by 
Cone Defined by eo. 

where 

@ ( p o )  = total flux response at D due to a source 
aperture bounded by eo = cos-’ p o ,  

@(p)=angular flux (per unit solid angle) on the 
plane surface, 

d z s  = differential solid angle subtended by the 
differential surface 27~y dy, 

(3.201) 

dEs = 2 n d ~  . (3.202) 

The function @(po) can also be interpreted as the 
variation of the total flux with distance from a disk 
source, since p o  depends on distance. With p o  = 0 (i.e., 
infinite plane source) there is no variation with dis- 
tance. For example, the angular flux might be repre- 
sented by 

n + l  
W P )  =7 PCln 7 (3.203) 

which is normalized such that 

(3.204) 

Then, for the flux at D, 

@(/Lo) = 1 - p;+ . (3.205) 

If the volume source density is uniform and exponential 
attenuation with a cross section C is assumed for 

the semi-infinite (infinite transverse dimensions) volu- 
metric source and shield regions (Fig. 3.1 l ) ,  the 
angular distribution on the shield surface implied by the 
kernel method can be shown to be proportional to  exp 
(-Cf/p). For a reasonably thick shield region, this func- 
tion will be highly peaked in the forward direction. For 
Ct = 2 ,  for example, the distribution is proportional to  
about p z  or p 3  , but most practical shelds have Ct > 5 ,  
which implies a highly peaked distribution. Because of 
this, the kernel-predicted flux along the centerline of 
the configuration will remain high and be conservative. 
That is, based on the kernel approach 

@(Po) = 1 - l l o E * ( ~ t / l l o ) / ~ , ( W  > (3.206) 

where - 
E, ( x )  = x 1 e-y y-2 dy . (3.207) 

This result will always be greater than values from Eq. 
3.205 for typical values of n and Ct ,  because the 
detector does not see as much of the off-centerline 
emission from the surface if the angular distribution is 
peaked in the forward direction. 

A third type of breakdown of kernel methods has 
been demonstrated in some space reactor applications, 
such as in a study by ORNL to use a boiling 
potassium-cooled reactor. Such designs incorporate a 
relatively small reactor with a large radiator (Fig. 3.12, 
from ref. 122). The diameter of the “thin-shell” 
radiator would be about 25 ft  and the diameter of the 
reactor shield about 6 or 7 ft.  Obviously, the dose rate 
due to  scattering off the radiator surface, which is 
“seen” by the crew or instrument compartment, would 
not be accounted for by a simple kernel method. Using 
the “buildup factor method” to compute the flux at 
the thin surface of the radiator and then computing a 
new source with the angular scattering cross section 
based on the original photon energy would under- 
predict the dose because of the preferential forward 
scattering of the higher energy photons. Using a kernel 
employing an estimate of the spectrum, such as the 
differential energy spectrum method,’ 2 3  would im- 
prove the accuracy. 

The third type of breakdown is further illustrated 
by the case of an asymmetric 2n shield design such 
as shown in Fig. 3.13 (ref. 124). The asymmetry 
was intended to  give a dose rate for a radial 
detector of at least 100 times the dose rate of an 
axial detector at a distance of 100 ft from the 
surfaces. A simple buildup factor calculation yielded 
a dose rate of about 1 mrad/hr of gamma rays at 
the axial detector (crew compartment), whereas a 
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discrete ordinates calculation' '' (DOT and 
SPACETRAN codes) gave a dose rate of 47 mrad/hr. 
The difference is explained by Table 3.1 1, which shows 
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that some of the gamma rays that leaked through the 
relatively thin tungsten side shield were scattered in the 
crew direction by the lithium hydride side shield. In 
fact, 98% of the gamma-ray dose rate reaching the crew 
compartment was due either to these scattered g a m a  
rays or to gamma rays produced by neutron captures in 
the lithium hydride side shield. The last line in the table 
shows that only 1% was due to captures. The third line 
shows that most of the gamma rays reaching the crew 
compartment do so by passing through the top surface 
of the side shield rather than scattering through the 
front shield. This is evident by the large reduction in 
the dose when the top surface of the side shield was not 
included in the top surface integral. 

5.9 4 1  6 4.5 42 
INCHES 

Fig. 3.13. SNAP Reactor with 27r Tungsten and Lithium 
Hydride Shield. (From ref. 124.) 

Table 3.1 1. Analysis of Gamma-Ray Dose Rate 
at Crew Position0.b 

Gamma-Ray 

(mrad/hr/MW) 
Assumptions Dose Rate Percentage 

All regions considered 47.1 100 
LiH side shield completely 1.04 2.2 

removed 

not included in surface 
integral 

LiH zone 

aFrom ref. 124. 
bSee Fig. 3.13. 

Top surface of LiH side shield 6.67 14.2 

No captures allowed in outer 46.5 99 



The removal cross section concept described in 
Section 3.8.2 provides a method for calculating the 
dose due t o  high-energy neutrons that penetrate a 
hydrogenous shield; however, the technique cannot be 
used t o  predict the dose due t o  neutrons that have been 
moderated or t o  calculate the thermal-neutron flux, 
which is used to  obtain the capture gamma-ray source 
distribution within the shield.” 

The  energy and spatial distributions of the moderated 
neutrons throughout a shield have sometimes been 
calculated b y  using the elementary theories of neutron 
moderation and diffusion (see Section 3.6). But these 
methods of reactor physics are normally used to predict 
the average behavior of neutrons involved in reactor 
criticality problems and implicitly assume that all neu- 
trons are nearly isotropic in their flight directions. In 
contrast, the neutrons of importance t o  the shielding 
problem are born with energies much greater than the 
average and develop a highly anisotropic angular distri- 
bution as they penetrate through the shield. Elementary 
core calculation methods cannot accurately describe the 
transport of these neutrons. 

The inadequacy of both the removal concept and the 
elementary methods of  reactor core physics t o  calculate 
the whole shielding problem has resulted in neutron 
transport being regarded as a two-step process: a step in 
which a high-energy neutron penetrates t o  some posi- 
tion within the shield where it suffers a collision that 
degrades its energy significantly; and another step in 
which the resulting moderated neutron enters a dif- 
fusion process. Characteristically, the distance traveled 
by  the neutron during the diffusion process is very 
much less than that which it traveled as a fast neutron, 
and once it has entered this second phase, the methods 
of reactor physics could apply. I t  was such reasoning 
that prompted the first-flight correction to  the age in 
Fermi age theory.’ This correction was necessary 
because a neutron cannot enter a process described as 
continuous slowing down (as required by Fermi age 
theory) until it has had a t  least one collision. 

*Calculations of capture gamma-ray doses a e  discussed in 
Section 3.10. 

The development of high-speed computers and the 
resulting extensive use of multigroup diffusion theory 
for reactor criticality problems made the development 
of a technique that  utilized diffusion theory even more 
attractive. In  one of the first attempts t o  develop such a 
technique, Haffner126 in 1958 used diffusion theory t o  
calculate thermal-neutron fluxes within a reactor shield 
and then normalized the results a t  each space point 
according t o  the fast-neutron dose rate obtained with 
the Albert-Welton kernel (see Section 3.8.2). Anderson 
and Shure’27 used a similar technique when they 
applied a known pure water kernel t o  normalize 
diffusion (actually P I  multigroup) results for a metal- 
water mixture. In  general, they obtained good results 
for laminated iron-water shields. (Shure’ later 
showed that a straightforward P 3  calculation without 
the use of a kernel also gave good results.) The main 
assumption in the Anderson-Shure technique is that the 
multigroup procedure correctly calculates the ratio 
between the fluxes in water and those in a metal-water 
mixture. 

After several attempts had been made to  develop a 
technique by  correcting diffusion theory results, a 
different approach t o  the problem evolved: a cor- 
rection was made before the diffusion theory cal- 
culation was performed. In  the early calculations this 
was done by  computing the singly scattered neutron 
flux from the uncollided flux and then using it as a 
source for the diffusion theory calculation. A difficulty 
inherent in this procedure, especially for hydrogenous 
media, is that the penetrating component does not 
consist of  uncollided neutrons alone, but rather is 
composed largely of neutrons that have had one or 
more collisions but  have suffered only small angular 
deflections. When these neutrons were accounted for, 
the first successful two-step model for neutron- 
penetration calculations became available. The combina- 
tion of the fast-neutron removal concept and age-diffu- 
sion theory is commonly referred to  as the “Spinney 
method,” after its chief developer. The remainder of 
this section is devoted t o  a description of the original 
version of this removal-age-diffusion method and subse- 
quent variations of it. 

3.9. Com binat ion Removal-Diffusion Methods 
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3.9.1.. THE SPINNEY METHOD 

Thc Spinney method as first described by Avery et 
al. I " i s  characterized by the following basic physical 
assu mp t i oils : * 

1 .  The penetrating component of the source neutrons 
consists of the high-energy neutrons that suffer only 
small energy loss through small-angle elastic collisions 
plus the uncollided neutrons. 

2 .  Ncutrons that suffer large energy loss through 
either wide-angle elastic or inelastic scattering are 
regarded as being removed from the fast beam. This 
process can be described by an energy-dependent 
"removal" cross section. 

3.  The removed neutrons are further degraded in 
energy in accordance with age theory and do not travel 
significantly from the point of removal. 

4. Near the source, the removed neutrons have a 
spectral and spatial distribution closely described by the 
conventional age-diffusion theory. 

5.  Neutrons removed after they have penetrated deep 
into a homogeneous medium develop an equilibrium 
spectrum and are attenuated at  the same rate that the 
penetrating component is attenuated. 

6. The  equilibriuni spectrum of the degraded neu- 
trons i s  disturbed near the boundaries between dis- 
similar media. 

The neutron flux that corresponds to the penetrating 
component of the source neutrons is given by the 
kernel 

- X R  ( E ) r  
SO(E) e Q0(r,E) = 

4nr2 
(3.207) 

where 

@O(r,E) is called t h e  "removal  flux" and  is d i f fe ren t ia l  
with respect to  the source energy.E, 

So(E)  = source strength of fission-spectrum neutrons 
per unit energy about the source energy E, 

C, ( E )  = removal cross section evaluated at the source 
energy E (determined experimentally or ap- 
proximated by the transport cross section),t 

r = distance from the source 

The removed neutrons are regarded as a local source 
of degraded neutrons, the behavior of which can be 
adequately described by diffusion theory. The  intensity 

*Items 4, 5, and 6 are intrinsically associated only with the 
earliest versions of the Spinney method. Most versions - 
certainly the most recent versions - are in no way constrained 
by these assumptions. 

?See Section 3.8. 

of this source is given by 

In the earliest formulation these neutrons (that is, the 
removed neutrons) are then introduced into the highest 
energy group of  an appropriate set of one-dimensional 
multigroup diffusion equations in order t o  calculate the 
distribution of  the low-energy neutron flux. The equa- 
tions comprising the multigroup set are given by  

where 

a, = group flux for the Gth  group, 

C'& = group-averaged macroscopic absorption cross 

D ,  = group-averaged diffusion coefficient, 

K;' = slowing-down length for the G t h  group. 

The slowing-down length is calculated according t o  

section, 

age theory and for the G t h  group is given by  

where 

l(E) = average change in lethargy per collision for 

C,(E) = macroscopic scattering cross section for neu- 

Ct,(E) = macroscopic transport cross section for neu- 

In the original formulation of the Spinney method, 
five energy groups were taken for the multigroup 
diffusion calculation. The bot tom group, which was a 
thermal group, had an upper energy of 2.81 kT (k = 
8.61 X lo- '  eV/"K), and the highest group (C =1) had 
an upper energy of 2 MeV. I t  was assumed that all 
removed source neutrons were placed directly into the 
highest group. Solution of the group diffusion equa- 
tions, of course, required that boundary conditions be 

neutrons of  energy E, 

trons of energy E, 

trons of energy E. 



specified at the inner and outer surfaces of the shield. A 
zero reentrant condition was imposed at the outer 
boundary; this was stated in terms of the extrapolated 
boundary condition, which requires the group fluxes to 
vanish at a distance 2.13 DG beyond the physical 
boundary. The boundary conditions at the inner sur- 
face of the shield were established by requiring that 
the fluxes be equal to those determined from reactor 
core calculations. 

This original formulation was used with some success 
to predict the distribution of low-energy neutrons in 
concrete shields for existing graphite-moderated re- 
actors, but it was not suited for general application. 
Some of its inadequacies were that ( 1 )  all the removed 
neutrons were placed in one group, which neglected any 
additional diffusion-type transport that could have been 
accomplished at energies greater than 2 MeV, (2) not 
enough groups were used to adequately represent the 
slowing-down process, and (3) the transfer of neutrons 
from one energy group to the next lower group did not 
describe the large energy losses experienced by neutrons 
that had suffered an inelastic scattering or  a collision 
with hydrogen. 

3.9.2. MODERN VARIATIONS 
OF THE SPINNEY METHOD 

Many modifications to and variations of the Spinney 
method have been developed, the most recent of which 
are exemplified by the RASH E, MAC, NRN, SABINE, 
and ATTOW codes. 

RASH E 

In the RASH E* formulation' 30 >1 the modifica- 
tions include an increase in the number of groups to 16 
and a broader energy range (0-10 MeV). Also, the 
one-dimensional multigroup equations have been modi- 
fied to include a direct source of removed neutrons into 
the nine highest energy groups. The equations so modi- 
fied are as follows: 

G = l ,  

*RASH E is the latest member of the RASH family of codes 
utilizing the Spinney method. RASH E is included in a 
FORTRAN code package known as COMPRASH and can be 
obtained from the Radiation Shielding Information Center 
(RSIC) (see Appendix 3B). 
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G = 2, 3 ,  ... 9 , 

G = 10, 11, ... 15 , 

G = 16 , (3.211) 

where the subscript T corresponds to G = 16 desig- 
nates the thermal-neutron energy group. 

The source term for the Gth group resulting from 
removed neutrons is given by 

where SB(r) is determined in the following manner. The 
fission spectrum is divided into 18 energy bands of 
1-MeV width. Neutrons removed from the Bth energy 
band are given by 

B =  I ,  2, ... 18 . (3.212) 

The neutrons from each of the removal bands in the 
energy range 0 to 8 IheV (B = 18, 17, 16, ... 11) are 
introduced into the energy group whose upper energy 
limit corresponds to the mid-energy of the band. 
Neutrons from all the bands above 8 MeV (f3 = 10 ,9 ,8 ,  
... 1) have a mean energy of about 10 bieV and are all 
introduced into the highest energy group (group l), 
which has an upper energy of 10 MeV.'This transfer 
scheme, along with the removal-band and energy-group 
structures for KASH E, is presented in Table 3.12. 
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Table 3.12. Removal-Band and Energy-Group Structures Used in RASH Ea 

Removal Bands Diffusion Groups Band-to- 

Group 
Trans fer 
Scheme 

Band Energy Limits (MeV) Group Energy Limits (MeV) , 

No. Upper Lower Upper Lower No .  

1 18 17 1 1.0 x 10'  7.5 x l o o  1 - 1  

2 17 16 2 7.5 x l o o  6.5 x 10' 2 - 1  

4 15 14 4 5.5 x l o o  4.5 x loo  4 - 1  

3 16 15 3 6.5 x 10' 5.5 x 10' 3 - 1  

5 14 13 5 4.5 x loo  3.5 x 10' 5 - 1  

6 13 12 6 3.5 x 10' 2.5 x 10' 6 - 1  

7 1 2  11 7 2.5 x 10' 1.5 x loo  7 - 1  

8 11 10 8 1.5 x 10' 5.0 x lo-' 8 - 1  

9 10 9 9 5.0 x lo-'  5.0 x lo-' 9 - 1  

10 9 8 10 5.0 x lo-' 5.0 10 - 1 

11 8 7 11 5 . 0 ~  1 0 - ~  5.0 11 - 2  

12 7 6 12 5.0 1 0 - ~  5 . 0 ~  12 - 3 

13 6 5 13 5.0 x lo-' 5.0 x 13 - 4  

14 5 4 14 5.0 x 5.5 14 - 5 

15 4 3 15 5.5 7.0 x lo-* 15 - 6  

16 3 2 16 

17 2 1 

18 1 0 

Thermal 16 -+ 7 

17 + 8 

18 - 9 

V r o m  ref. 130. 

MAC 

In the MAC* formulation132,133 the number of en- 
ergy groups for the one-dimensional group-diffusion cal- 
culation is increased to 31 over an energy range from 0 
to 10 MeV. Again the fission spectrum is divided into 
18 removal bands of I-MeV width. The flux from the 
removed neutrons (usually called "removal flux") cor- 
responding to the Bth removal band is given by 

S0(E) e - w E ) r  
( r )  = S E b  dE . (3.213) 

E b + l  4 d  

The removed neutrons are introduced into the five 
highest energy groups only. The transfer scheme, along 

*Available from RSIC in several versions (see Appendix 3B).  

with the removal-band and energy-group structures, is 
presented in Table 3.13. 

The MAC formulation differs from the original 
Spinney method in two major respects: (1) the removal 
flux is added directly to the group-diffusion flux after 
the diffusion calculation has been performed, and the 
combined flux is then used to calculate source neutrons 
for the lowerenergy diffusion groups, and (2) the gen- 
eral treatment of the downscatter transfer of neutrons 
allows for a more accurate representation of inelastic 
scattering and collisions with hydrogen. 

The highest energy group (G = 1) is not actually treat- 
ed as a diffusion group. The collision density, 
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Table 3.13. Removal-Band and Energy-Group Structures Used in MACa 

Removal Bands  Diffusion Groups 

Energy L i m i t s  (MeV) Band 
No. Upper Lower  

Energy L i m i t s  (MeV) Group 
No. Upper  Lower  

1 

2 

3 

4 

5 

6 

7 

8 

9 

10 

11 

12 

13 

14 

15 

16 

17 

18 

18 

17 

16 

15 

14 

13 

12 

11 

10 

9 

8 

7 

6 

5 

4 

3 

2 

1 

17 

16 

15 

14 

13 

12 

11 

10 

9 

8 

7 

6 

5 

4 

3 

2 

1 

0 

1 1.000 x 10 6.065 x 10' 

3.679 x 10' 2 6.065 x 10' 

3 3.679 x 10' 2.231 x 10' 

4 2.231 x 10' 1.353 x 10' 

5 1.353 x 10' 8.208 x lo-' 
6 8.208 x lo-' 3.876 x lo-' 
7 3.876 x IO- '  1.830 x lo-'  
8 1.830 x lo-' 6.733 x lo-' 
9 6.733 x lo-' 2.600 x lo-' 

10 2.600 x IO-* 2.000 x 10-2 

11 2.000 x 10-2 9.118 x 

12 9.118 x '3.355 

13 3.355 1.234 x 

14 1.234 x 4.540 x 

15 4.540 x 3.199 x 

16 3.199 x 2.255 x 

17 2.255 x 1.120 

19 6.147 x lo-' 3.374 lo-' 
18 1.120 6.147 x lo-' 

20 3.374 lo-' 1.515 x lo-' 
21  1.515 x IO-' 1.016 x lo-' 
22 1.016 x lo-' 4.565 x 

23 4.565 x 1.375 x 

24 1.375 x 9.214 x 

25 9.214 x 6.716 x 

26 6.716 x 

27 4.140 2.775 x lo-' 

28 2.775 x 1.860 x 

29 1.860 x 1.247 x 

30 1.247 x 7.595 x 

4.140 

31 7.595 x 10-8  0 

Bmd-to-  

Group 

T r a n s  fer 
Scheme 

1 - 1  

2 - 4 1  

3 - 1  

4 - 1  

5 - 1  

6 - 1  

7 - 1  

8 - 1  

9 - 1  

10 - 1 

11 - 1 

1 2  - 1 

13 4 2 

14 - 2 

15 - 2 

16 - 3 

17 - 4 

18 -. 5 

nI:rom ref. 132. 
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which is based on the removal fluxes (corresponding to 
the energy bands I through 12), provides neutrons by 
downscattering from the first group into the G’th 
group, G’ = 2, 3, ... 31. The kinds of  possible interac- 
tions, as described by  their respective group-to-group 
transfer cross section C I , G , ,  will determine the extent 
of the downscatter. A diffusion calculation is then 
performed on the second group, with the neutrons 
removed from group 1 used as the source. Solution of 
the group-2 diffusion equation, 

3 1  

D, v 2  @2(r) - E c ~ ~ Q ~ ( ~ )  - @2(r) 

G = 3  

+El,* [ B ~ @ ~ ( i r ) ] = 0 3  (3.214) 

yields the group-diffusion flux a2 (r) .  The group-2 
removal fltxes are then added t o  the diffusion flux in 
order to calculate the downscatter source of  neutrons 
from group 2 into the lower-energy groups. The 
downscatter source into group G (C 3, 4,  ... 31) is 
given by 

The calculation proceeds in a similar fashion from one 
group to the next lower group and so on. I n  general, for 
G > 2,  the group-diffusion equations are given by 

3 1  

D , V 2  @ & -  E c,,, @ G W  - @&I 
G’.-G+ 1 

G = 3 , 4  ,..., (3.215) 

and the downscatter source term from the G t h  group 
into the  G’th group is 

It is noted that there are no band-to-group transfers for 
G > 5 and the downscatter source term becomes simply 
E G G @G ( r ) .  

NRN 

I n  the NRN* formulation 1 3 4 i 1 3 5  the energy struc- 
ture for the removal bands and energy groups differs 
significantly from that used in the RASH and MAC 
formulations. The group structure for the group- 
diffusion calculation consists of 24 groups over an 

*Available from RSIC. 

energy range 0 t o  18 MeV, and the fission spectrum is 
divided into 30 bands of  varying widths. The removal- 
band and energy-group structures are presented in Table 
3.14. 

The NRN method allows for the transfer of  removed 
neutrons from each removal band to  many diffusion 
groups. The source for the Gth  diffusion group arising 
from all removal collisions is 

E q&%(r),  
B 

where @; = removal flux in the Bth energy band, and 
= energy-averaged removal cross section for the 

transfer of neutrons from the Bth  removal band into 
the Gth  energy group. 

The calculation also allows transfer from each diffu- 
sion group t o  all lower-energy diffusion groups. The 
one-dimensional group-diffusion equation for the G t h  
group is given by  

2 4  

D,V2 @&I - ,E EGG’ @&) - @&I 
G =G+1 

where the various diffusion theory parameters have 
conventional definitions. 

SABINE 

The SABINE developed and used in 
Europe later than RASH and NRN, employs 19 removal 
bands and 26  diffusion groups, the energy structures of  
which are shown in Table 3.15. The code is also one 
dimensional and can solve problems in slab, cylindrical, 
and spherical geometries. Particular attention has been 
paid to the coupling of  the removal flux with the 
diffusion equations. The assumed model in SABINE 
makes use of the same transfer matrix for band-to- 
group and group-to-group transfers, that is, 

where the  removal band B and diffusion group G’ 
correspond t o  the same energy and G’ $ G. There is also 
within-group transfers of removal neutrons to  the 
diffusion group of  the same energy range. This source is 
given by  

where B and G are for the same energy range and 
G m  a x  

= C,(B) - E; - C E G ‘ ,  I 
G = E + 1  
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Table 3.14. Removal-Band and Energy-Group Structures Used in NFWa 

Removal  B a n d s  Diffusion Group 

Energy L i m i t s  (MeV) Band 

No. Upper  Lower 

1 

2 

3 

4 

5 

6 

7 

8 

9 

10  

11 

12 

13 

14 

15 

16 

17 

18 

1 9  

20 

21 

22 

23 

24 

25 

26 

27 

28 

29 

30 

1.8 x 10'  

1.43 X 10' 

1.136 x 10' 

9.021 x I O o  

7.166 x 10' 

5.692 x 10' 

4.521 x I O 0  

3.591 x 10' 

2.853 x 10' 

2.267 x 10' 

1.800 x 10' 

1.430 x 10' 

1.136 X 10' 

9.021 x lo-'  
7.166 x lo- '  

5.692 x lo- '  
4.521 x lo-'  
3.591 x lo- '  

2.853 x lo-' 

2.267 x lo- '  
1.800 x lo-'  
1.430 x lo- '  
1.136 x lo-'  
9.021 x lo-' 
7.166 x IO-' 

5.692 x lo-* 
4.521 x lo-' 
3.591 x lo-' 
2.853 x lo-' 
2.267 x 

1.43 x 10' 

1.136 x I O 1  

9.021 x 10' 

7.166 x 10' 

5.692 x 10' 

4.521 x 10' 

3.591 x I O o  

2.853 x 10' 

2.267 x 10' 

1.800 x 10' 

1.430 x 10' 

1.136 x 10' 

9.021 x lo-' 
7.166 x lo-' 
5.692 x lo-' 
4.521 x lo-' 
3.591 x lo-' 
2.853 x lo-' 
2.267 x lo-'  
1.800 x lo-' 
1.430 x lo-' 
1.136 x lo-' 
9.021 x lo-' 
7.166 x lo-' 

5.692 x lo-' 
4.521 x lo-' 

3.591 x 

2.853 x IO- '  

2.267 x lo-' 
1.80 X lo-' 

No. 
- 

1 

2 

3 

4 

5 

6 

7 

8 

9 

1 0  

11 

12 

13 

14 

15 

16 

17 

18 

19 

20 

21 

22 

23 

24 

Group Energy Limi ts  (MeV) 

- 
Upper  Lower 

1.8 x 10' 

1.35 x 10' 

1.0 x 10' 

7.8 x 10' 

5.9 x 100 

4.4 x 100 

3.4 x 100 

2.6 x 10' 

2.0 x 100 

1.5 x 10' 

1.2 x 100 

9.0 x 10-1 

7.0 x lo-'  

5.1 x 10-1 

3.8 x lo-' 
3.0 x lo-' 
1.0 x 10-1 

3.10 x lo-' 

1.10 x 10-2  

1.10 x 1 0 - ~  

1.10 x 1 0 - ~  

1.10 x 

1.10 x 10-6 

Thermal  

1.35 x 10'  

1.0 x 101 

7.8 x I O o  

5.9 x 100 

4.4 x 100 

3.4 x 100 

2.6 x 10' 

2.0 x 100 

1.5 x 10' 

1.2 x 100 

9.0 x 10-1 

7.0 x lo- '  
5.1 x 10-1 

3.8 x lo-' 
3.0 x lo- '  
1.0 x 10-1 

3.10 x lo-' 
1.10 x 10-2 

1.10 x 

1.10 x 1 0 - ~  

1.10 x 

1.10 x 10-6 

1.05 x 

uFrom ref. 134. 
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Table 3.15. Removal-Band and Energy-Group Structures 
Used in SABINEO 

Removal Bands Diffusion Groups 

Band Upper Energy Group Upper Energy Lethargy 
No. Limit No. Limit Width 

0 18 MeV - 

1 18 Mev 1 14.918 0.9 
2 16.5 2 6.065 0.5 
3 14.918 3 3.68 0.5 
4 14 4 2.23 0.5 
5 13 5 1.35 0.5 
6 12 6 821 keV 0.5 
7 11 7 498 0.5 
8 10  8 302 0.5 
9 9 9 183 0.75 

I O  8 10 86.5 1 .oo 
11 7 I1  31.8 1.00 
12 6.065 12 11.7 1 .oo 
13  5.2 13 4.31 1 .oo 
14 4.4 14 1.58 1 .oo 
15 3.68 15 583 eV 1 .oo 
16 3.00 16 214 1 .oo 
17 2.23 17 78.9 1 .oo 
18 1.35 18 29.0 1.00 
19 0.821 19 10.7 0.75 

20 5.04 0.5 
21 3.06 0.5 
22 1.85 0.5 
23 1.12 0.5 
24 0.682 0.5 
25 0.414 0.728 
26 0.200 _ _  

Tram ref. 136. 

C,(B) being the removal cross section for the removal 
band B. Although the developers for the RASH code 
did not find that experimental energy-dependent cross 
sections improved results, the developers of SABINE 
used cross sections for water, carbon, aluminum, iron, 
lead, and terphenil measured at  a 5.5-MeV accelerator. 

Gamma-ray transport is accomplished by using seven 
energy groups and empirical region-dependent buildup 
factors based on transport calculations. Both primary 
sources (fission gamma rays) in the reactor core and 
secondary sources (capture and inelastic-scattering 
gamma rays) generated within the shield can be 
included. 

ATTOW" 

The ATTOW code' is a two-dimensional (finite 
cylinder or 2D rectangular) diffusion code which can 

*Available from RSIC, 

accept removal sources prepared by a built-in sub- 
routine. The removal-source subroutine calculates 
sources at points determined by the routine and fits 
two-dimensional polynomials, of order chosen by the 
user, t o  the results. These data are put  on  tape in a form 
which can be used b y  ATTOW. The spatial integration 
over the reactor core is performed by a Gaussian 
scheme using a stored table of zeros and weights. 

Removal cross sections C,, are input to  the program, 
allowing the user control of the removal assumptions. 
The full group-to-group transfer matrix CGtG is also 
assumed for the diffusion treatment. 

The ATTOW code has been used extensively in the 
United Kingdom for solving problems associated with 
fast-breeder reactors. It was found that the results were 
somewhat sensitive t o  the energy group structure 
chosen.' 3 9  The 23-group structure (see Table 3.16) was 
judged best. This sensitivity is most pronounced when 
materials such as graphite are present and is attributed 
to  the continuous slowing-down (age theory) assump- 
tion, although even a full-scatter matrix cannot preserve 
the energy-angle correlation in diffusion theory.' 4 0  

These difficulties should not be apparent in hydrog- 
enous materials which generally have short diffusion 
lengths. 

3.9.3. DIFFERENCES IN MODERN METHODS 

A comparison of the preceding formulations shows 
that, with respect to  the removal-band and energy- 
group schemes, RASH E and MAC are similar in concept 
and identical in many respects. The NRN, SABINE or 
ATTOW approach is more general and should provide 
the most accurate model if the required removal and 
transfer cross sections are known. 

With regard t o  removal cross sections, RASH E and 
MAC use the cross sections suggested by the original 
Spinney formulation, which have the general form 

(3.21 7) 

where 

C, = removal cross section, 

E t  = total macroscopic cross section, 

Eel = elastic scattering cross section, 

f =  fraction of  elastic collisions that  can be re- 
garded as glancing. 
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Table 3.16. Energy Group Structure Used in 
ATTOW' 

Lower Energy Limit ( M e w b  
Group - 

Number 49-Group 23-Group 16-Group 
Scheme Scheme Scheme 

1 
2 
3 
4 
5 
6 
7 
8 
9 

10 
1 1  
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40  
41 
42  
43  
44 
45 
46  
47 
48 
49  

7.5 
6.5 
5.5 
4.5 
3.5 
2.5 
1.5 
0.85 
0.5 
0.35 
0.225 
0.15 
0.1 
7(-2) 
5(-2) 
3 S - 2 )  
2.2 5 (- 2) 
1.5(-2) 
1(-2) 
7(-3) 
5(-3) 
3 s -  3 )  
2(-3) 
1 S -  3) 
1(-3) 
7(-4) 
5(-4) 
3.8(-4) 
2.25 (- 4) 
1.5 (-4) 

7(-5) 
5(-5) 
3 s - 5 )  
2.2.5-5) 
I S - 5 )  
1(-5) 
'7-6) 
5.5 (- 6) 
4.6 5 (- 6) 
3 S - 6 )  
2.25 (- 6) 
1.60(-6) 
1.3(-6) 
1(-6) 
7(--7) 
5.5(-7) 
7(-8) 
Thermal 

1(-4) 

7.5 
6.5 
5.5 
4.5 
3.5 
2.5 
1.5 
0.85 
0.5 
0.15 
5(-2) 
1 s - 2 )  
5(-3) 
1.5( - 3) 
5(-4) 
1.5(-4) 
5 ( - 5 )  
1.5(-5) 
5(-6) 
1.5(-6) 
5s-7) 
7.0(-8) 
Thermal 

7.5 
6.5 
5.5 
4.5 
3.5 
2.5 
1.5 
5(-1)C 
5(-2) 
5(-3) 
5(-4) 
5 ( - 5 )  
5(-6) 
5 s - 7 )  
7(- 8)  
Thermal 

'From ref. 138. 
bUpper energy limit of Group 1 was 10 MeV in all cases. 
CRead: 5 X IO-' .  

I f f  is taken to be the average cosine of scattering in the 
laboratory system, lo, the removal cross section be- 
comes the transport cross section originally used by 
Spinney. In general, the parameter f cannot be de- 
termined intrinsically, and so a value must be assumed 
or determined empirically. This has been accomplished 
for a large variety of typical shield configurations, and 
the removal cross sections thus determined are used 
with a high degree of confidence. 

NRN removal cross sections are obtained by experi- 
mentally determining the angles of scatter above which 
elastic collisions can be considered as removals. The 
removal cross section is given by 

* *  

~ ( 0 )   COS 0) , (3.218) 
= =t - 2"Jc:sf9 r e m  

where u(O) = differential elastic scattering cross section 
per unit solid angle about the scattering angle O in the 
center-of-mass system, and O r e m  = scattering angle 
above which the collision is considered to be a removal. 
The value of Orem is determined by comparison of 
predicted neutron reaction rates with experimental 
values. A "best" value of cos O r e m  = 0.45 was obtained 
for hydrogen, and cos Orem = 0.60 was obtained for 
other nuclides. With these values of Orem a full set of 
removal cross sections can be derived. 

The NRN removal cross sections do not appear to 
have any advantage over the Spinney-type cross sec- 
tions since each scheme involves only a single adjust- 
able parameter, O r e m  andfrespectively. 

The MAC scheme for transferring removed neutrons 
into energy groups differs significantly from that used 
by either RASH E or NRN. The procedure in MAC is to 
add the removal flux to the newly calculated group- 
diffusion flux in order to establish the group-to-group 
downscatter source. In contrast, RASH E and NRN 
introduce the removed neutrons into given groups as 
source neutrons to that group, a more natural pro- 
cedure for the group-diffusion calculation. RASH E has 
a very restricted transfer scheme wherein the removed 
neutrons from a given removal band are introduced into 
a prescribed energy group and into no other. NRN 
provides for a much more general scheme, employing a 
removal matrix to describe the transfer of removed 
neutrons from a given removal band into any of the 
lower-energy groups. 

Of the various methods considered here, the slowing- 
down model embodied in NRN, and especially in 
SABINE, gives the most accurate description of the 
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slowing-down process. It involves a general transfer 
matrix (from one group to  any lower energy group) 
using detailed elastic and inelastic scattering cross sec- 
tions for all nuclides. A similar scheme is employed by 
MAC; however, some inaccuracy is allowed in the de- 
scription of the nonhydrogen elastic scattering. 

RASH E uses a group-to-group transfer cross section 
based on the continuous slowing-down (age) model, 
which allows transfer t o  the next lower energy group 
only. This could lead to serious inaccuracies, par- 
ticularly with respect to inelastic scatterings and col- 
lisions with hydrogen. 

In conclusion, it can be stated that the Spinney 
method, used much more in Europe than in the U.S., 
seems to usually provide reliable results, but since it is 
an empirical method, it should be treated with some 
caution. That is, before being used extensively for 
design, results from rigorous calculational methods or 
experiments with similar configurations should be 
compared. Its simplicity and speed of computation 
could be a significant advantage over more sophisticated 
methods in design work. 



3.10 Application of Kernel Technique to Secondary 
Gamma-Ray Dose Calculations. 

Often a large fraction of  the radiation dose behind 
reactor and shelter shields is due to  the gamma rays 
produced by  neutron capture, and possibly t o  inelastic 
scattering, within the shield. If the spatial distribution 
of the neutron flux is known, the gamma-ray dose rate 
may be calculated for a large number of  configurations 
by integrating the dose kernel over the source volume. 
Using the kernel technique as exemplified by Eq. 3.148 
and slab geometry as shown in Fig. 3.14, the dose rate 
r(t,a,b) on the shield surface due t o  a distributed 
monoenergetic isotropic gamma-ray source S(x) 
bounded by planes at  a and b is given by 

(3.219) 

where 

x = one-dimensional s p a t i a l  coordinate  meas- 
ured from t h e  reference plane,  

t = sh ie ld  th ickness ,  

p = radial  d i s t a n c e  t o  source  point meas- 
ured f rom the  detector  a x i s ,  

R = d i s t a n c e  from the source  point t o  the  
de tec tor ,  

gamma rays of source  energy E ,  
p =total  macroscopic cross s e c t i o n  for 

G(E)  = uncollided flux-to-dose conversion factor, 
which for conversion t o  rads/hr is 5.767 X 

pat 

p t p t  
E ,  where - is the mass 

energy absorption coeff ic ient  for t i s s u e ,  

Br(pR) = d o s e  buildup factor for gamma rays of 
source energy E. 

pa t(Q 
10-5 - 

Since R Z  = p 2  + z 2 ,  

t , a ,  b) 

T h e  gamma-ray source term can sometimes be repre- 
s e n t e d  qui te  wel l  e i ther  by f i t t ing with s e v e r a l  
terms or by  p iecewise  f i t t ing of the  thermal-neutron 
flux distribution* (or of the f a s t  flux dis t r ibut ion 
if ine las t ic  s c a t t e r i n g  i s  being cons idered)  with a 
f u n c t i o n  of the form 

where Sa is the gamma-ray source at  a and k is the 
reciprocal of the effective neutron relaxation length. 
Usually Sa can be calculated by 

sa = Y @(a> c , (3.2 2 2 )  

where 

y = number of photons of energy E re leased  
per neutron capture  (or per  i n e l a s t i c  
sca t te r ing) ,  

@(a) = neutron flux (usual ly  thermal flux for 
capture  and f a s t  flux for ine las t ic  s c a t -  
ter i n g) , 

C = macroscopic neutron c r o s s  s e c t i o n  for 
thermal-neutron capture  (or for ine las t ic  
s c a t t e r  i ne). 

When exponent ia l  or polynomial forms of the 
buildup factor  a re  used  ( s e e  Section 3.8.1), ' t o -  
gether with the  source  descr ipt ion given by E q .  
3.221, then E q .  3.220 c a n  be  integrated analyt i -  

*The product ion of secondary  gamma r a y s  by the 
capture  of nonthermal neutrons is usua l ly  ins igni f icant  
i n  she l te r  des ign .  

80 
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Fig. 3.14. Geometry for Integration over Exponential Source 
Distribution. 

c a l l y  and very useful  resu l t s  obtained. In the 
paragraphs given below, examples  of s u c h  integra-  
t ions are given for two cases of interest :  a s l a b  
shield of f ini te  th ickness  t and a semi-infinite 
sh ie ld  ( t  - w ) ,  the  la t ter  corresponding t o  a r e a l  
problem in which the sh ie ld  i s  very thick.  

3.10.1. CALCULATION FOR SLAB SHIELD 

Trubey6 ' ca lcu la ted  t'he secondary gamma-ray 
d o s e  r a t e  for a s l a b  sh ie ld  by us ing  the  Berger 
f o r m  of the buildup factor ,  

B r ( E , p R )  = 1 + C ( E )  pR e D p R  , (3.223) 

in Eq 3.220. T h e  equat ion then becomes 

C(E) e p [ D - l J R  
m 

where the uncollided d o s e  rate  T,,(f,a,b) i s  repre- 
sen ted  by the first term, and the s c a t t e r e d  d o s e  
rate I 'Jt ,a,  b) i s  given by the  second term. 

Letting p [ t  - x]  = y and integrating the first term of 
Eq. 3.224 by parts,* the dose rate from the uncollided 
gamma-ray dose rate is given by 

+ El ([l - a l d t  - bl) - e a '" t -b lE l  ( p [ t  - b ] ) )  , (3.225) 

*The interpretation of p [ t  - XI  is p X [ I  - XI  rather than p with an argument It - XI. 
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where a =  k/p and E ,  is a n  exponent ia l  function of 
the f i rs t  order and is defined by 

(3.226) 

Graphs of the  exponent ia l  funct ions and other de-  
ta i l s  of their properties a r e  shown i n  Appendix 3H. 

If a =  1 or 0 ( c a s e  of uniform s o u r c e  dis t r ibut ion)  
or if b == t ,  indeterminate forms resul t  which may 
be  resolved by L’HGpital’s rule, by s e r i e s  ex-  
pansions,  or by integrat ing E q .  3.224 for k = p, 
k = 0, and b = t ,  respect ively.  T h e s e  cases a r e  
as  follows: 

For  b < t and a = 0 

I - - i  
- e-pb  E,(p[ t  - b ] )  + e-@ In- 

t - t  
. (3.228) 

- a i > )  . 

(3.229) 

For  b = t and a = 1 

- e - p f  In(rp[t - a ] ) } ,  (3.231) 

where In y = 0.577215665 . . . , Euler ’s  cons tan t .  

F o r  the  s p e c i a l  case of b = t and a = 0, Eq. 3.229 
can  be represented by 

where 

+ In 11 - a l l )  . (3.233) 

Equation 3.233 is shown plotted in Figs. 35.1 through 
35.3 of Appendix 35 as a function of the number of 
mean free paths pt with LY as a parameter. 

[Note: Equations 3.227 through 3.233 can be used to 
calculate the total gamma-ray dose (uncollided t 
scattered) when the Taylor form of the buildup factor 
is used (see Section 3.8.1).] 

Since z = t - x, the scattered dose rate behind a slab 
shield can be determined by expressing the second term 
of Eq. 3.224 (i.e., the Berger term) as 

(3.234) 

Integrating E q .  3.234 gives  
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Examination of Eq. 3.234 and Eq. 3.235 reveals that 
unless D < 1, negative doses are obtained. However, D 
is always significantly <1, as is shown in Fig. 3.5 in 

T h e  d o s e  rate  from t h e  uncollided flux i s  repre- 
s e n t e d  by the  f i rs t  term and i s  given by 

-apt  {EJl  - a1 p t )  When CY + D = 1, Eq. 3.235 gives an indeterminate $ o ( p t j  
Section 3.8. 

2a 
form which, when resolved, becomes 

l + a  
- In I -I}) 1 - a  

, (3.241) 

F~~ the special 
3.236 can be expressed as sca t te red  contribution. T h e  terms are 

b = and a = 0, E ~ ,  and the  sum of t h e  next  th ree  terms represents  t h e  

where 

and a’= a + D. 
is shown in Figs. 35.4 through 3J.6 in Appendix 35. 

T h e  function given by Eq. 3.238 

3.10.2. CALCULATION FOR SEMI-INFINITE 
SHIELD 

Solut ions of Eq. 3.220 for a semi-infinite sh ie ld ,  
that  i s ,  for b = ~ a ,  give useful  r e s u l t s  that. a r e  
general ly  appl icable  for the  s p e c i a l  case in which 
a = 0, particularly if one i s  in te res ted  in a gamma- 
ray hea t ing  ra te  within a sh ie ld .  Using t h e  poly- 
nomial form of the  buildup factor ,  

C l a i b ~ r n e ’ ~  
this case, which were all in the form 

determined solutions to  Eq. 3.220 for 

e- aw 2 1 1 

[(l - a)3 +?m] 6 +3(p t )  =-+’ 3 + 

- [ 2 ; K )  + (1 - pt a>* + (1 - 
. (3.244) 

a)3 

When a = 0, a n  indeterminate form o c c u r s  i n  
Eq. 3.241, and when a = 1, indeterminate  forms 
occur  in  Eqs. 3.241 through 3.244. T h e  following 
equat ions  resu l t  when the  indeterminate  forms a r e  
evaluated:  

For a = 0 

(3.245) 

For a = 1 

E ,  ( p t )  e-pt 

2 2 
$o bt) = - + - In (2ypt) , ‘(3.246) 

l4, ( p t )  = ( p t  + ;)$, (3.247) 



e - w  
, (3.248) $ 1  - -t [2(pt )2  + 11 - 

2 16 

The functions given by  Eqs. 3.246 through 3.249 for 
the semi-infinite medium are plotted in Figs. 35.7 
through 35.10 in Appendix 35 for various values of a. 
Figures 35.7 and 35.8 may be compared with Figs. 35.1 
and 35.4, which are the corresponding functions evalua- 
ted for a slab shield. 

T h e s e  so lu t ions  contain the  contribution from the  
gamma-ray s o u r c e s  between the  detector  posi t ion 
a t  t and infinity, s i n c e  integration of Eq. 3.220 
from x = 0 t o  x = - produces two integrals :  one 
giving t h e  contribution from the interval  0 (= x 5 t 
and t h e  other giving t h e  contribution from t h e  
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< <  interval  t = x = 

the  contribution 
penetrat ions is 

-. In the  usua l  sh ie ld ,  however; 
from the  second interval  a t  d e e p  
small, and t h e  gamma-ray d o s e  

rate  ou ts ide  a sh ie ld  of th ickness  t will be  only 
s l ight ly  less than that  ca lcu la ted  for a d i s t a n c e  
t within a semi- inf ini te  sh ie ld .  

If Eq. 3.240 is used  for gamma-ray heat ing c a l -  
cu la t ions  within a sh ie ld ,  t h e  coeff ic ients  An 
must correspond t o  the  polynomial f i t  of the energy 
absorption buildup factor, and t h e  conversion 
factor for express ing  t h e  heat ing rate  i n  W/g be- 
comes 

G ( E )  = 1.6 x S E ,  (3.25 0) 
P 

where p, /p  is the mass energy absorption coeffi- 
c ien t  of the  material i n  which heat  is generated.  



n 

n 

Appendix 3A. Derivation of the Integrodifferential and Several 
Integral Forms of the Adjoint Boltzmann Transport Equation 

Integrodifferential Adjoint Boltzmann Transport Equation. - The integrodifferential equation which is adjoint 
t o  the Boltzmann transport equation (Eq. 3.1 ) mathematically defines the adjoint flux and the characteristics of 
hypothetical particles called adjunctons. The use of the equation is discussed in Section 3.1, and its derivation is 
described as follows. 

Consider an as yet unspecified function @*(EE,fi,t) which exists over the same phase space and satisfies the 
same kind of boundary conditions that are satisfied by  the forward angular flux @(<E,fi,t). Further, let an operator 
O* be defined such that the following integral relationship is satisfied: 

[ l l l @ * ( r , E , a , r )  0 @(i,E,fi,t) d i d E  d 6  dt =IJJJ@(i,E,fi,r) O* @*(<E,%) d f d E  d 5 d t  + (boundary terms) . 

The O* operator will be referred to  as the adjoint operator t o  the corresponding forward operator 0. 

resultant equation (term by term) over ail phase space: 
Multiply each term of the Boltzmann transport equation, Eq. 3.1, by the function @*(F,E,fi,t)and integrate the 

lJjJ@*(tE,ii,f) 5 @(i,E,fi,f) d i d E  d f i  dr t ~ ~ ~ J @ * ( < E , ~ , t )  V - a  @(r;E,@f)dFdEdfiddr 
v at 

+JJ[I@*(f,E,fi,t) C,(F,E) @(fE,E, t )  d i d E  d f i  dt  

=j^JJh*(i,E,fi,r) S(<E,Gr) dFdE dfi dt 

t JJlJ@*(<E,fi,f) JJC,(F,p -+ E,a'  + R) @(<p,af,r) dE' d f i f  d i d E  d 6  d t  . ('41 1 
It can be shown that the following adjoint relationships are true for the conditions associated with a particle 

transport problem: 

Boundary  T e r m  
t IlJjJ@('.E,fi,t) @*(cE,a,t)fi.dF dE d n  d t ]  
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The boundary terms which occur in Eqs. A2 and A4 may vanish while conforming t o  the natural characteristics 
of the system under analysis. For example, the extent of the time domain can be defined such that initial and final 
values of @ and/or @* are zero (and the boundary term of Eq. A2 vanishes). Also the surface within which the 
spatial domain of phase space is contained can be so located that the combination [@@*I is zero everywhere on that 
surface (and the boundary term of Eq A4 vanishes). 

For Monte Carlo analysis the elimination of the boundary terms presents n o  problem and in no way restricts the 
generality of the solution obtained. However when the adjoint problem is solved in a deterministic mannerI4* (for 
example, by the discrete ordinates method) wherein boundary conditions must be formally satisfied, the boundary 
term of  Eq. A4 will in general not vanish and some complications may result in specifying the adjoint source and 
subsequently in interpreting the adjoint flux so defined. 

Using the adjoint relationships given by Eqs. A2-A5, Eq. A I  can be rewritten as 

+JJJfi(f,E,fi,r) Z,(?,E) @*(?,E,fi,t) d f d E  d n  d t  =JjJJ@(F,E,fi,r) S*(r,E,a,t) dFdE d a  dr 

+ jJJJ@(F,E,n,t) lJZs(.;E + E' ,a+  a') @*(F,E',fi',r) dE' dfi '  dTdE d n  d t  , (A6) 

where the adjoint source term S*(F,E,E,f) is defined such that 

Noting that the forward flux @(F,E,fi,t) can be factored from each term, Eq. A6 can be rearranged as follows: 
r 

- j j Z s ( ? , E  + E',f i  + fi 'p*(F,E',ii ' , t) dE' d a '  d rdE  d f i d t  = 0 . (A8) 

It is required that the forward angular flux @(F,E,fi,r) correspond t o  nontrivial physical situations, that is, that 
@(F,E,fi,t) > 0 over a t  least some portion of phase space. The observation is made that @*(<E,fi,t) is still essentially 
undefined and that many functions @*(F,E,fi,t) probably satisfy Eq. A8. At this point, @*(?,E,n,t) is defined t o  be 
that function which satisfies the following equation: 

1 

+E'$+ G') @*(i,E',fi',t) dE' df i '  = 0 . 1 
This condition also satisfies Eq. A8 exactly and provides the following @*(f;E,a,t)defining integrodifferential 
equation: 

i a  
v at 

- - - @*(cE,fi,t) - v.fi @*(<E,fi,t) + Z,(CE) @*q,E,R,t) 

= S*(<E,fit) +JJZ,(F,E + E ' , a  + a') @*(<g,fi',t) dE' d a  , (A9) 

which is commonly called the adjoint integrodifferential Boltzmann equation. 
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The solution of Eq. A9 can be accomplished by the usual deterministic methods. However for certain 
applications, a Monte Carlo solution is the preferred method of analysis’43 and the integral forms of the adjoint 
transport equation are the formal basis for the random walk of the hypothetical particles called “adjunctons.” The 
derivations of the “integral point-value equation,” the “integral event-value equation,” and the “integral emergent 
adjuncton density equation” are presented in this appendix along with comments describing the relationship of 
these integral equations to a Monte Carlo solution of the adjoint problem. 

integral Point-Value Equation. - Equation A9 is now transformed into an integral form. To accomplish this, the 
combination of the convection and storage terms are first expressed in terms of the spatial variable R which relates a 
fixed point in space r to an arbitrary point F‘ = F + R f i ,  as shown in Fig. 3A.1. The total derivative of @*(cE,a,t) 
with respect to R is given by 

ax a@* ay a w  + aZ a@* a t  a@* - @*(f‘,E,$jJ’) = - - + - - - - + -  -, d 
dR aR ax aR a.v aR az aR at 

which, according to Fig. 3A.1 and noting that the adjunction’s speed v is equal to dR/dt, can be rewritten as 

Using the integrating factor 

exp [- s” C,(Ft R’a,E)  dR‘] 
0 

provides the following relationship: 

1 = exp [-J” C,(F+ R’6.E) dR’] - @*(?,E,a,t‘) - C,(T.‘,E) @*(F’,E,Qt’) 
0 [;x 

1 
Equation A I  I ,  together with Eq. A10, can be arranged to give 

[ - @*(?,E,fi,t’) - V - f i  @*(i’,E,fi,f’) +C,(?,E) @*(?,E,R,{) 

d 
= exp [+ iR C,(F t R’S2.E) dR‘] - {@*(F’,E,fi,t’) exp [ - J R  C,(r+ R’fi,E) dR‘] } 

dR 0 

It is noted that Eq. A12 is identically the lefthand side of Eq. A9, which can now be rewritten as 

d 
- - {@*(F’,E,fi,f‘) exp [- J R  C,(r+ R ’ 6 )  dR’] } 

dR 0 

= exp[- J” C, (;+ R’6,E) dR’] [S*(F’,E,a,t‘) + JJZs(J‘,E --* E’,fi + fi’) @*(?,E‘,fi,t‘) dE’ d n ‘ ]  
0 

Multiplying Eq. A I  3 by dR, integrating from R = 0 to  R =m, and assuming that - 
@*(m,E,n,t,t_) exp [- J Ct(F+ R’fi,E) dR’] 0 , 

0 

yields the following expression for @*(F,E,n,t): 

@*(r,E,f i ,r)  =$ dR exp [-$ C,(F+ R’fi,E)dR’] [S*(F+ Rfi,E,fi,t + R / v )  
- - 

0 0 

+ j I C s ( F +  R5.E + E’,a + 2’) @*(F+ Rfi,E‘,a‘,t + R/v)]  
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Fig. 3A.1. The Spatial Variable R. 

By redefining the source term as 

S;(CE,a,t) E dR exp [- j” Xt(F+ R’a,E) dR’] S* ( i+  Rfi,E,fi,t t R/v) , SoR 0 

Eq. A14 can be rewritten as 

In terms of the transport integral operator* and collision integral* operator, Eq. A16 becomes 

@*(cE,a, t )  = S$(F,E,fi,t) t T(F+F’J,Q) C(F’,E + E’,fi + a’) @*(F’,E’,p,t’) . (A1 7 )  

*These integral operators are defined by Eqs. 3.112 and 3.1 13, Sec. 3.5. 
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n 
A comparison of Eq. A17 with Eqs. 3.1 16,3.117, and 3.1 18 reveals that the function @*(i-,E,fi,t) as defined by 

Eq. A17 is adjoint to the emergent particle density x(F,E,5,2,t) as defined by Eq. 3.1 17. Therefore, let @*(F,E,fi,t) be 
denoted by X*(T,E,fi,f) and Eq. A17 becomes 

X*(<E.fi,t) = s;(EE,E,t) + I-(;+ F ’ , E , ~ )  c(~’,E + E’,G + a’) x*(?,E’,E‘,t’) . (‘41 8) 

The nature of X*(F,E,fi,f) will depend on S;(EE,a,t) - how or on what basis should Sg(F,E,Qf) be specified? If 
S*(F,E,%f) is set equal to P‘(F,E,a,f) (the response function of the effect of interest X due to a unit angular flux), 
then 

According to Eq. A7, assuming that the “boundary term” is zero, the effect of interest h is also given by 

h =jJJjx*(?,E,n,t) S(;,E,E,t) d?dE d E d t ,  (‘420) 

so that X*(cE,Gf) can be interpreted as the value (to the effect of interest) of a particle leaving an event at rwith 
phase space coordinates (cE,&). Therefore, X*((E,R,t) will be called the “point-value function,” and the 
X*(<E,fi,t)defining equation, Eq. A18, will be referred to as the “integral point-value equation.” 

As suggested by Eq. A19, the adjoint source S*( tE , f i , t )  is identified as 

S*(F,E,Qf) = P ( r , E , a , t )  . 

Substitution of Eq. A21 into Eq. A15 yields 

S;(i-,E,Qt) = dR exp [- j R  C,(Ft R’R,E) dR’] p (? , e ,E , f ’ )  , s 0 

which can be rewritten as 

The effect of interest has  given by Eq. A19 can be rewritten as 

where $(F,E,fi,f) is the collision density and PL (CE,E,f) is the response function of the effect of interest h due to a 
unit event at (F,E,Gt) in phase space and 

Substituting Eq. A24 into Eq. A22 and introducing the transport integral operator yields 

and the integral point-value equation becomes 

The effect of interest h can also be expressed in terms of the emergent particle density; that is 
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where x(<E,R,tt) is the emergent particle density and px(F,E,Q,t) is related to the other response functions by 
considering a particle which emerges from a collision at F with phase space coordinates (?,E,fi,t). The particle will 
experience an event in dR about F' = F +  R f i  at time t' = t t R/v with the probability 

Zf(F',E) exp [- Z,(i t R'fi,E) dR'] dR , / g R  
and the contribution of this event is the response function P* (F',E,fi,t'). The sum of all such contributions to the 
effect of interest is given by 

R J- dR Z,(F',E) exp [-J Z,(F+ R'fi,E) dR'] P$G,E,fi,t') , 
0 0 

and should be the same as the response f u n c t i o n p  (<E,fi,t) which is based on emergent particle density. This leads 
to the relationships, 

px(l;E,fi,t) = S - d R  C,(?,E) exp [- 1" Zf@+ R'fi,E) dR'] P"',E,E,t') = T(r-,r',E,S1)P~LG',E,fi2,t') , 
('428) 0 0 

and since f'@(F,E,fi,t) = C,(F,E) P$ (FE,fi,t),  

PX(F,E,fi,t)=J-dR exp [- sR 0 Z ~ ( ~ + R f S 2 , E ) d R ' ] I P ~ ( r ' , E , ~ , t ' ) .  (A291 
0 

Another form of the integral point-value equation is obtained by substituting Eq. A28 into A26, yielding 

X*(F,E,fi,t) =P(F*E,fi , t)  t T(F+ r',E,fi) C(?',E -+ E' ,n  + a') X*(?',E',fi',t') . 6430) 

Integral Event-Value Equation. - A value function based on the collision density can be related to the 
point-value function by considering a particle leaving a collision at i with phase space coordinates (F,E,fi,t). The 
value of this particle to the effect of interest is the point-value function X*(f,E,fi,t). This particle will experience an 
event in dR about 7' = F  t R f i ,  with the probability 

R 
Z,@',E) exp [- s Zt(F -+ R'Rb') dR'1 dR 

0 

and the value of this event (to the effect of interest A) will be referred to as the event-value and be denoted by 
W(r',E,fi,r').That is, the event-value function W(r',E,n,t') is defined as the value (to the effect of interest) of having 
an event at F' with an incoming particle which has phase space coordinates (?' ,E,qt ') .  The sum of all such 
contributions to the effect of interest is given by 

S - d R  C,(?.',E)exp [-J" C,(FtR'fi,E)dR'] W(?,E,E,t'), 
0 0 

and, if the event-value function is properly defined, should equal the point-value function; that is, - 
~*(F,E,fi,t) = s dR Z,(F',E) exp [- j" Zf(Ft R'fi ,E) dR'] W(f',E,a,t') , ('43 1 ) 

0 0 

and, introducing the transport integral operator, Eq. A31 can be rewritten as 

x*(<~,R,t)  = T(i-+?',E,fi) w ( F ' , E , Q ~ ' )  . 

W(F,E,n,t) = W (f,E,n,t) t C(F,E -+ E' ,n  + a)  x*(<E',a,t) 

W(F,E,C?,t) = PJ, (r;E,Cl,t) t C(r;E -E'$ + a') T(F+ F',E',S2') W(i',E',fi ' , i) . 

(A321 

Acomparison of Eq. A32 with Eq. A26 would show that W(F,E,fi,t) can be identified as 

(A331 

and substitution of Eq. A32 into Eq. A33 yields the defining equation for the event-value function: 

(A34) 
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Equation A34 will be referred to as the “integral event-value equation.” A comparison of Eq. A34 with Eq. 3.1 16 
would show that the event-value function W(T,E,E,t) is adjoint to the collision density +(T,E,R,t). Therefore the ef- 
fect of interest is also given by 

h = ~ s s S T ( ( F ‘  -+ F,E,Q) S(F‘,E,Q,f’) W(F,E,a,t)dfdE d f i  dt  . (‘435) 

The term T(?’ + <E,n)  S(r‘,E,fi,t‘) can be identified as the “first collision source” and denoted by 

S,  (F,E,fi,t) z T(?’ + r,E,a) S(r“,E,Q,t‘) , (‘436) 

and Eq. A35 can be rewritten as 

h = fsslSc ( f ,E ,a , f )  W(r;E,fi,t) dFdE d c d r  . (‘437) 

Integral Emergent Adjuncton Density Equation. - The solution of either the point-value equation, Eq. A30, or 
the event-value equation, Eq. A34, could be accomplished by Monte Carlo procedures; however, the random walk 
would not be the same as that implied by the integral emergent particle density equation, Eq. 3.1 17. It would be 
desirable to use the same random walk logic (and therefore the same Monte Carlo computer program) for both 
forward and adjoint calculations. 

Consider the following altered form of Eq. A30, 

w 

X*(f,E,ct) = PXEE,f i , t )  t dR Z f ( k E )  exp [- $” Zf(rCt R’fi,E)dR’] 
0 0 

The additional weight factor [Zf(7’,E)/Zf(T,E)] arises since Eq. A30 and its altered form, Eq. A38, are actually 
flux-like equations, even though X*(F,E,n,t) is adjoint t o  the emergent particle density x*(F,E,fi,t). 

In a fashion analogous to the forward problem, the following new quantities are defined: 

and 

Since X*(f,E,D,t) is a flux-like variable, the new variable H(i,E,fi,t) can be regarded as a collision density and 
G(KE,fi,t) as an emergent adjuncton density. The defining equation for G(r,E,R,t) should be the proper basis for an 
adjoint random walk. 

The defining equation for the adjoint event density formation H(<E,a,t) is obtained by considering the altered 
form of Eq. A26, 

m 

X*(?,E,fi,t) =s dR Zt(F’,E) exp [- 1” Z,(F + R’6,E) dR‘] [@’(?,E,a,f’) 
0 0 
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multiplying it by Zt(<E), and rearranging it as follows: 

Z,(f,E) X*(F,E,fi,t) = 
co 

dR C,(F,E) exp [- sR Z,(F+ R'fi ,E) dR'] 
0 0 

. [Z,(i',E) PG(F',E,fi,t') + ?(?,E + E' ,a  + a') Z,(?,E') x*(F',E',n',t')] , 

where 

Noting that 

H(EE,fi,t) = Z,(F,E) X*(<E,fi,t) , 

and 

Z,(<E) fi (F,E,R,t) = P@(tE,E,t) , 

Eq. A42 becomes 

H(F,E,fit) = T(r' .+ F,E,fi) [r"P(?,E,E,t') + ;(?,E -+ E',fi -+ h') H(r',E",fi',t')] . 

A comparison of Eq. A44 with Eq. A40 reveals that 

G(f,E, f i , t )  = P@ (i,E,fi,t) + ?(F,E + E', 6 + 5') H(F,E',fi',t) , 

and the subsequent substitution of Eq. A40 into Eq. A45 yields the following defining equation for the adjoint 
emergent particle density: 

Equation A46 is almost identical with Eq. 3.1 17, which defines the forward emergent particle density and also 
Serves as the formal basis for the forward random walk. In order to facilitate a Monte Carlo solution, Eq. A46 can be 
interpreted in terms of the transport of pseudo-particles called "adjunctons" in the (P' + P) direction of transport. 
This presents two immediate problems: (1) the transport of the adjunctons from r' = F + R R  to 7 woul ibe  in a 
direction oppo$te to the direction vector a; therefore, the direction vector for the adjuncton should be R E -a, 
and f' = r - R R ;  and ( 2 )  the collision kernel should be interpreted as describing the (P' +P) change in phase space 
experienced by the adjuncton during its random walk; therefore, let 

Equation A47 may be rewritten in terms of a normalized collision kernel and a weight factor: 
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A 

The selection of the new energy (E)  and direction (Q = -6) is made from the normalized collision kernel and the 
weight of the adjuncton is modified by the weight factor 

Zs(F,E + E',a-+ a') dE d f i  

C,(rSE') 

which is no longer a simple nonabsorption probability and may assume values in excess of unity. Therefore, there is 
no "analog" scattering for adjunctons and the adjuncton's weight may increase at some collisions. 

Equation A46 can be written as 

G(?,E,fi,t) = P(F,E, f i , t )  + C(6E' + E,fi  '+ 6) T(F' + <Ef,?) G(?,E',;r,t') , ('449) 

which now corresponds to the transport of adjunctons and provides the desired basis for the adjoint random walk. 
Equation A49 can also be referred20 as the "integral emergent adjuncton density equation." Note that the source of 
adjunctons is provided by P@(<E,Qt), which is related to P ( E E , a , t )  as follows: 

P(F,E,&) =P@(F,E, - a,t) , (A501 

which must be taken into consideration if the response function P@@,,E,a,t) has angular dependence; however, 
many physical situations permit an isotropiciassumption. 

A Monte Carlo solution of Eq. k49, the integral emergent adjuncton density equation, will generate data from 
which t,he adjuncton flux x*(F,E,R,t) and other quantities of interest can be determined. The geteral use of 
X*(i,E,fi,t) must take into account the reversal of direction between adjunctons and real particles, i.e., Q = -6. For 
example, consider the various ways of calculating the answer of interest: 

Further, if outward boundary crossings would be scored in the forward problem, the corresponding source 
adjunctons would be introduced in the inward direction. Likewise, adjunctons would be scored for entering a 
volume from which the source particles in the forward problem would be emitted. It should be noted that many 
sources and response functions are isotropic and the problem of direction reversal need not be considered. 



Computer codes which utilize the methods described 
in this chapter are abstracted below. These abstracts 
with more details also appear j n  ORNL-RSIC-13,’44 a 
publication of the Radiation Shielding Information 
Center which is continually updated to include new 
codes as they become available. I t  is emphasized that 
the abstracts given here do not represent all the codes 
available from RSIC, nor the many shielding codes not 
in the RSIC collection for reasons such as obsolescence, 
nonavailability due to proprietary interests, or insuf- 
ficient testing or documentation. 

All codes and auxiliary routines received by RSIC are 
checked out for operability; that is, sample problems 
are run by the RSIC staff. If the code is operable, it is 
packaged and assigned a CCC number, and a code 
abstract is written and distributed. The codes, as 
packaged, run on certain computers. Operating them on 
these computers should provide a minimum of dif- 
ficulty. Translating to different machines may or may 
not prove difficult, depending on various factors. 

Inquiries or requests for a code package should be 
mailed to 

CODES COORDINATOR 
Radiation Shielding Information Center 
Oak Ridge National Laboratory 
P. 0. Box X 
Oak Ridge, Tennessee 37830 

or telephoned to 

Area Code 615,483-861 1, Ext. 3-6944, or to 
FTS 615-483-6944. 

A reel of magnetic tape should accompany each request 
for a code. 

Members of the RSIC staff are always available for 
consultation in connection with the shielding code 
packages, either in regard to operation of the code or to 
its applicability for a particular shielding problem. 
Cross-section data libraries on magnetic tape for use in 
the various codes are also available. These are con- 
stantly being revised and extended. Also, RSIC main- 
tains a f i e  indicating whether a code package has been 
made available in additional machine languages, made 
operable on other machines, etc. 

Appendix 3B. Computer Code Abstracts 
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3B. 1. DISCRETE ORDINATES PROGRAMS 

DTF-IV (CCC-42*), DTF-69 (CCC-130). - The Los 
Alamos Sc ien t i f i c  Laboratory program DTF- 
IV8*’459’46 solves the multigroup, one-dimensional 
Boltzmann transport equation for plane, cylindrical, or 
spherical geometries. Anisotropic scattering is repre- 
sented by Legendre polynomial expansion of the 
differential scattering cross section. Energy dependence 
is treated by the multigroup approximation and angular 
dependence by a general discrete ordinates approxima- 
tion. Iteration processes for within-group scattering and 
upscattering are accelerated by system-wide renormal- 
ization procedures. 

General anisotropic scattering capability is provided 
in each of the three geometries, upscattering convergence 
acceleration is used, an optional group- and pointwise 
convergence test is available, and a neutron-conserving 
negative flux correction routine is used. 

An auxiliary routine, GAMLEG, provides cross 
sections for photon transport problems in a form 
suitable for input to DTF-IV. 

DTF-IV is written in FORTRAN IV language and is 
operable on IBM-7090/30, IBM-3600, B-5500 and 
CDC-6000 computers. 

was 
developed by Sandia Laboratories to treat X-ray trans- 
port. A special version of GAMLEG prepares the 
necessary cross sections which include effects not 
normally treated in gamma-ray shielding. 

ANISN (CCC-82). - ANISN,9 a code developed 
jointly by the Oak Ridge Computing Technology 
Center and Oak Ridge National Laboratory, solves the 
one-dimensional Boltzmann transport equation in slab, 
spherical, or cylindrical geometry. The source may be a 
futed source, a fission source, or a subcritical combina- 
tion of the two. A criticality search may be performed 
on any one of several parameters. Cross sections may be 
weighted using the space- and energy-dependent flux 
generated in solving the transport equation. In this way, 
fine-group libraries can be reduced or “collapsed” to a 

A special version of DTF-IV, called DTF-69,’ 

*Refers to RSIC code package number. 



few-group structure for economical production calcula- 
tions. 

The solution technique is an advanced discrete 
ordinates method which represents a generalization of 
the method originated by Wick4 and greatly developed 
and extended to curvilinear geometry by Carlson6 at 
Los Alamos Scientific Laboratory. 

ANISN has been used for many shielding problems, 
including deep-penetration problems in which angle- 
dependent spectra are calculated in detail. The principal 
feature that makes ANISN suitable for such problems is 
the use of an advanced programming technique with 
optional data-storage configurations, which allows effi- 
cient execution of small, intermediate, and extremely 
large problems. ANISN also includes an efficient tech- 
nique for handling general anisotropic scattering, point- 
wise convergence criteria, and alternate step-function 
difference equations that effectively prevent oscillating 
flux distributions that sometinies occur in discrete 
ordinates solutions. 

ANISN can be used in the adjoint mode to produce 
importance functions for Monte Carlo calculations or to 
produce dose transmission functions for differential 
sources. 

ANISN is written in FORTRAN IV language for use 
on IBM-7090 and -7094 computers and in FORTRAN 
IV (H) language for use on the IBM-360, CDC-6600, 
CDC-1604 and B-5500 computers. 

BIGGI 3P or 4T (CCC-66). - The BIGGI 3P 
p r ~ g r a m , ’ ~ ~ > l ~ ~  developed by EURATOM, Ispra 
(Varese), Italy, solves the Boltznmann transport equation 
in plane multilayer geometry. It computes gamma-ray 
angular fluxes, spectra, buildup factors, and albedos. 
The sources must be monoenergetic and located on one 
outer boundary; their angular distribution can be 
isotropic or collimated. 

BIGGI 3P integrates the Boltzmann equation numeri- 
cally. The basis is the pair of coupled integral equations, 
discussed for the case of neutrons by Weinberg and 
Wigner.’ Discrete ordinate meshes are defined in each 
of the three concerned dimensions (angle, space, and 
gamma-ray wavelength), and the integrals figuring in the 
transport equation are approximated by sums. The 
program solves the integral equations without iteration, 
since they are of the Volterra type (as long as only 
energetic downscattering is assumed). The gamma-ray 
cross sections (in Thompson units per electron) of each 
slab must be given in the input. The contribution of the 
low-energy tail below the cutoff energy to the four 
buildup factors (energy flux, particle flux, dose rate, 
and energy absorption rate) and to the two albedos 
(energy and particle current) is estimated. An exponen- 

95 

tial transformation allows rather great spatial integra- 
tion steps, up to 2 or 3 mean free paths. 

BIGGI 3P is written in FORTRAN language for use 
on the IBM-7090 computer. 

BIGGI 4T, available for the IBM-360 computers, is an 
extension of BIGGI 3P which allows spherical geome- 
try, arbitrary source location, multiple source energies, 
additional layers, and other improvements. 

DOT-I, 11, 11-W (CCC-89). - The DOT two-dimen- 
sional code, developed jointly by the Oak Ridge 
Computing Technology Center and Oak Ridge National 
Laboratory, was first available in 1966.’ ’ DOT-III2 
and DOT-11-W,’ the latter a modification by Westing- 
house Astronuclear Laboratory, became available in 
1969. 

DOT is a general-purpose program which solves the 
linear, energy-dependent, Boltzmann transport equation 
for two-dimensional r-z, x-y, and r-0 geometries. The 
basic form of the solution is the flux, averaged in the 
spatial interval surrounding rj ,  zp  integrated over the 
energy group g, and averaged in the solid angle segment 
surrounding a direction a. 

The gradient or convection term in the Boltzmann 
equation is approximated by the discrete ordinates 
finite difference technique (Carlson’s S, method). The 
inscatter integral is approximated by expanding the 
differential cross section in a Legendre series which 
allows the integral to be computed by quadrature. DOT 
will solve forward or adjoint, homogeneous or inhomo- 
geneous problems. An inhomogeneous problem may 
have a volume-distributed source or a specified angular 
flux at the right or top boundaries; fissions may be 
included for a subcritical system. For the homogeneous 
or eigenvalue problem the following can be deter- 
mined: (1) the static multiplication factor k, (2) time 
absorption, “Rossi a,” (3) fissile material concentration 
for a specified! k ,  (4) zone thickness for a specified k. 

The primary differences between previous two- 
dimensional codes and DOT are the following: (1) 
general anisotropic scattering is allowed; (2) boundary 
sources may be treated by specifying the angular flux at  
the right or top boundaries; (3) angular fluxes may be 
printed or written on binary tape; (4) if specified, a 
pointwise inner iteration flux convergence criterion is 
used instead of the integral test; (5) the integral inner 
iteration convergence criterion specifies that the average 
absolute pointwise flux error be less than a specified 
quantity epsilon; (6) input data are processed by the 
FIDO routine used in DTF-I1 and ANISN; and (7) if the 
linear difference equations produce a negative flux, the 
flux is recalculated using the step function difference 
equations to inhibit oscillation due to extrapolation 
(optional). 
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The major improvements of the DOT-11-W code over 
the DOT code are the inclusion of acceleration tech- 
niques on the group flux solution, improved con- 
vergence logic, asymmetric quadrature capability, and 
improved tape operations. 

DOT-I is operational on the IBM-7090 computer, 
DOT-I1 on the IBM-360/75/91 computers, and 
DOT-11-W on the CDC-6600 computer. 

XSDRN (CCC-123). - XSDRN, developed jointly by 
the Oak Ridge Computing Technology Center and Oak 
Ridge National Laboratory, uses the Nordheim integral 
treatment, narrow resonance, or an infinite-mass ap- 
proximation to process resonance data on a master 
neutron cross section library and thus obtain micro- 
scopic fine-group cross sections for a large number of 
nuclides. The code' ' then uses the cross sections in an 
independent calculation to solve for fluxes, eigenvalues, 
critical dimensions, etc., in a discrete ordinates, diffu- 
sion, or infinite-medium theory calculation. The fine- 
group fluxes thus obtained can then be used to collapse 
the fine-group cross-section data to a more tenable 
few-group structure for use in several independent 
computer codes. 

The two principal calculations performed by XSDRN 
(resonance calculation and ANISN flux calculation) 
both employ numerical finite-difference techniques. 
For the resonance calculation, this involves a Simpson 
integration to solve for the collision density in the 
resonance range. The flux calculations employ a multi- 
group energy structure, an arbitrary spatial structure 
and a mechanical angular quadrature, all of which must 
be used in the various integration and differencing 
schemes in the code. The flexible dimensioning scheme 
employed allows optimal use of core storage. A unique 
method of storing cross sections is employed which 
eliminates impossible and/or zero transfer cross 
sections. 

The master cross-section library tape for XSDRN is 
produced by XLACS.' 5 z  Cross-section tapes can be 
generated for ANISN, DOT, CITATION, ROD, or the 
EXTERMINATOR41 codes. 

XSDRN is available in FORTRAN IV for the 
IBM-360 computer. The library of data is available on 
tape from RSIC. 

ASOP (CCC-126). - ASOP'S3-'55 is a shield opti- 
mization program based on the one-dimensional dis- 
crete ordinates transport code ANISN (see above). I t  
has been used to design optimum shields for SNAP 
uranium-zirconium hydride thermoelectric reactors and 
uranium oxide thermionic reactors. For weight opti- 
mization, ASOP generates coefficients of linear equa- 

tions d-iscribing the logarithm of the dose and dose- 
weight derivatives as functions of position from data 
obtained in an automated sequence of ANISN calcula- 
tions. With the dose constrained to a design value and 
all dose-weight derivatives required to be equal, the 
linear equations may be solved for a new set of shield 
dimensions. Since changes in the shield dimensions may 
cause the linear functions to change, the entire pro- 
cedure is repeated until convergence is obtained. 

The detailed calculation of the radiation transport 
through shield configurations for every step in the 
procedure distinguish ASOP from other shield optimiza- 
tion programs which rely on multiple component 
sources and attenuation coefficients to describe the 
transport. 

ASOP is written in FORTRAN for the IBM-360 
computers. 

TWOTRAN (CCC-129). - The discrete ordinates 
TWOTRAN program,' 6-1 originated at Gulf Gen- 
eral Atomic and expanded at Los Alamos, solves 
two-dimensional particle transport problems in x-y, r-z, 
and r-0 geometries.* Both forward and adjoint, homo- 
geneous (k,ff or parametric eigenvalue searches) or 
inhomogeneous time-independent problems are solved 
subject to vacuum, reflective, white, periodic, or input 
specification of boundary flux conditions. Both aniso- 
tropic inhomogeneous problems and general anisotropic 
scattering problems are treated, and arbitrary numbers 
of groups of up or down scattering are allowed. 

Energy dependence is treated by the multigroup 
approximation and the angular dependence by a dis- 
crete ordinates approximation. Space dependence is 
approximated by the diamond difference scheme with 
a set-to-zero negative flux control. Anisotropic scat- 
tering and anisotropic inhomogeneous sources are rep- 
resented by finite spherical harmonics expansions. 
Within-group iterations, upscattering iterations, kej f  
iterations, and eigenvalue search iterations are accel- 
erated by a coarse-mesh particle rebalancing algorithm. 

The variable dimensioning capability of Fortran-IV is 
used so that any combination of problem parameters 
leading to a blank common vector length less than 
LENXCA can be used. For a 65 K machine LENXCA 
can be greater than 35,000, depending on local system 
requirements. With a few exceptions, only within-group 
problem data are stored in fast memory and data for all 
other groups are stored in auxiliary bulk memory such 
as extended core storage. 

*As of this writing, June, 1970, only the x-y version is 
available from RSIC, but  the general version is expected to  be 
available in the near future. 



TWOTRAN is programmed in Fortran-IV with a small 
amount of mixed integer-floating arithmetic, general- 
ized subscripting, encode statements, and minor use of 
10 H Hollerith formats. It is operable on the CDC-6600 
and IBM-360 computers. 

3B.2. MONTE CARLO PROGRAMS 

05R (CCC-17). - Oak Ridge National Laboratory’s 
code system 05R3’ was designed to calculate, by 
Monte Carlo methods, any quantity related to neutron 
transport in reactor or shielding problems. Arbitrary 
three-dimensional geometries bounded by quadric sur- 
faces may be treated, and the sources may have 
arbitrary spatial, energy, and angular distributions 
specified by a subroutine written by the user. Aniso- 
tropic scattering can be included for both elastic and 
inelastic processes. Fissionable as well as nonfissionable 
media can be treated. Several variance reduction tech- 
niques are available. 

For maximum flexibility, a calculation generally 
consists of two main operations. The primary routine, 
called the 0 5 R  Generator, is used to generate neutron 
case histories and produce collision tapes on which are 
written any, or all, of 34 distinct parameters describing 
each collision. These tapes are subsequently processed 
by analysis routines, usually written by the user, to 
produce Monte Carlo estimates of any desired quantity. 
Analysis routine STATEST’” is included in the 
prototype of the 0 5 R  system for shielding problems (a 
“prototype” code is one which is a completely assem- 
bled version, including sample input and output). 
STATEST provides for statistical estimation of the flux 
in energy bins for an array of space points. 

A batch system of generating case histories is em- 
ployed to obtain a very detailed table of cross sections 
in fast memory. The cross sections in memory at one 
time encompass only a small energy range. All collisions 
of a batch for which these cross sections are needed are 
generated before another group of cross sections are 
read from tape. Cross-section data are prepared for use 
in 0 5 R  by XSECT, a code which performs a variety of 
manipulations: preparing, updating, and editing a 
master tape and performing cross-section arithmetic. 

Source data are generated by subroutine SOURCE, 
usually written by the code package user for his specific 
problem. 

A very general geometry subroutine permits the 
treatment of complicated geometries. As many as 16 
media are permitted and boundaries may be either 
planes or quadric surfaces, arbitrarily oriented and 
intersecting in arbitrary fashion. 
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The 0 5 R  program is available in FORTRAN language 
for the IBM-7090, IBM-360, CDC-I 604, CDC-6600, and 
UNIVAC-1108 computers. A revision and extension of 
0 5 R  is available as 0 6 R  (see below). 
06R (CCC-128). - Oak Ridge National Laboratory’s 

code system 06R,36  the name of which derives from 
0 5 R  Revised, was developed primarily to take advan- 
tage of the larger machine fast memories now available 
and to read the standard ENDF/B cross-section format; 
however, it also incorporates other improvements, 
including time dependence and albedo “scattering.” 

The 0 5 R  concept of an energy supergroup-subgroup 
structure is retained in 0 6 R ,  but the greater storage 
capacity may allow all the cross sections to be stored 
simultaneously, depending on the number of super- 
groups used and the energy range of a supergroup 
variable. At this writing, 0 6 R  does not utilize ENDF/B 
resonance parameters. 

As 0 5 R  does, 0 6 R  may output “collision tapes” 
containing neutron history parameters for selected 
events to be analyzed later; however, provisions for 
analyzing during the calculation any event which can be 
recorded on a collision tape have been added. The 
methods of analysis are as described in the manual on 
ACTIFK,’ all options of the FORTRAN-IV ACTIFK 
being available to the user. 

0 6 R  also provides for the generation of secondary 
gamma rays during the neutron transport problem. At 
each scattering, if gamma-ray generation has been 
specified, the code calls subroutine GAMMA, which 
prepares and writes a magnetic tape of the parameters 
of the gamma rays generated by the user-provided 
subroutine GAMGEN. 

Versions of 0 6 R  are available for the CDC-1604 and 
IBM-360/75/91 computers. For use on the IBM-360 
computer, the general-geometry and special-geometry 
packages must be compiled in double precision. This 
requires that variables used from or passed to the 
geometry package in COMMON or as a formal param- 
eter be of type REAL*8. Subroutines NORML and 
GOMFLP have been added to the geometry packages to 
handle albedo reflections. 

MORSE (CCC-127). - The MORSE code, developed 
by Oak Ridge National Laboratory, is a multipurpose 
neutron and gamma-ray transport Monte Carlo code.3 ’ 
It  uses multigroup cross sections, which allow the 
solution of neutron, gamma-ray, or coupled neutron 
and gamma-ray problems in either the forward or 
adjoint -mode. Time dependence for both shielding and 
criticality problems is provided. General three-dimen- 
sional geometry, as well as specialized one-dimensional 
geometry descriptions, may be used with an albedo 
option available at any material surface. 



Standard multigroup cross sections such as those used 
in discrete ordinates codes may be used as input; either 
ANISN or DTF-IV cross-section formats are acceptable. 
Anisotropic scattering is treated for each group-to- 
group transfer by utilizing a generalized Gaussian 
quadrature technique. The modular form of the code 
with built-in analysis capability for all types of estima- 
tors makes it possible to solve a complete neutron- 
gamma-ray problem as one job, and without the use of 
tapes. 

CDC-1604, CDC-6600, and IBM-360/75/91 versions 
of MORSE are available. 

TRG-SGD (CCC-25). - The Monte Carlo code 
TRG-SGD,’ ’ written by the Technical Research 
Group for the Air Force Weapons Laboratory (Kirt- 
land), calculates the time and space distribution of 
secondary gamma-ray doses and dose rates from a 
nuclear weapon detonation in the atmosphere or in the 
ground near the surface of the earth. The neutron 
source is given as leakage from the exploded device. The 
effects of the blast and fireball on the transport of the 
neutrons and gamma rays are taken into account. 

The neutron reactions considered are elastic scat- 
tering, inelastic scattering, radiative capture, and non- 
radiative capture. The (n,2n) reaction is treated as 
inelastic scattering by cross-section modification. The 
prompt neutrons are degraded 14-MeV neutrons from a 
fusion reaction, fission neutrons, and neutrons which 
are assumed to have a “bomb thermal Maxwell- 
Boltzmann spectrum.” The delayed neutrons are from a 
fission source with a time-dependent volume distribu- 
tion. The only gamma-ray reactions considered are 
Compton scattering and absorption, the latter being the 
total of pair production and photoelectric effects. 

The Monte Carlo method is used to generate the 
neutron distribution, the secondary gamma ray source 
distribution, and the secondary gamma-ray dose distri- 
bution. The effects of the air-ground interface, an 
inhomogeneous atmosphere, and time-dependent 
hydrodynamics are taken into account. The type and 
yield of weapon and the detonation altitude determine 
the initial conditions. The geometric system is taken to  
be axially symmetric. In addition to statistical estima- 
tion of the gamma-ray source and dose distributions, 
various importance-sampling techniques are used. These 
include Russian roulette for low-contribution particles 
and generalized quota sampling. In addition, all random 
variables are picked from a truncated exponential 
distribution. This procedure is controlled by input 
parameters. 

TRG-SGD is written in FORTRAN language and is 
operable on the CDC-1604 computer. 
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DIPSEA (CCC-35). - The Monte Carlo code 
DIPSEA’ 6 2  was developed by Technical Operations 
Research to determine the radiation dose resulting from 
a point isotropic gamma-ray source in an atmosphere of 
air whose density varies exponentially. The source may 
be monoenergetic or polyenergetic. A cylindrical ge- 
ometry is used to describe the atmospheric region 
surrounding the point source. The assumed cylinder, 
divided into a layered series of square toroids of 
uniform cross section, extends from a lower altitude of 
11 km to an upper altitude of 100 km and has a 
variable radius that normally has a maximum limit 
imposed by statistical fluctuations inherent in Monte 
Carlo calculations. The code assumes that the photon is 
lost after passing these boundaries. 

The atmosphere is assumed to be divided into two 
zones, each zone having its own exponential expression 
for the density. The range of each zone is set equal to 
the altitude interval in which the gradient of the 
molecular-scale temperature is nearly constant. 

Energies in the program are expressed in units of 
Compton wavelength. All interactions in the media are 
considered to be either Compton scattering or pair 
production; pholoelectric absorption is accounted for 
by reducing the weight at each collision. 

The components calculated are the scattered, direct, 
and total doses in the center of each toroidal cross 
section, in units of both keV/g and ion pairs/cm3. The 
scattered dose is computed by the Monte Carlo method 
and the unscattered dose is computed analytically. 

DIPSEA is written in FORTRAN and FAP languages 
and can be used on IBM-704, -709, -7090, and -7094 
computers. 

was designed by Oak Ridge National Laboratory to 
calculate by Monte Carlo methods any quantity related 
to gamma-ray transport. The system is represented by 
two typical codes: OGRE-PI and OGREG. The 
OGREPl code is a simple prototype which calculates 
the dose rate on one side of a slab due to a plane source 
on the other side. OGREG, a prototype of a code 
utilizing a general-geometry routine, calculates the dose 
rate at arbitrary points and provides for a very general 
source description by allowing the user to prepare his 
own source tape. 

Case histories of gamma rays in the prescribed 
geometry are generated and then analyzed to produce 
averages of any desired quantity, which in the case of 
the prototypes is the gamma-ray dose rate. The system 
is designed to achieve generality by ease of modifica- 
tion. No importance sampling is built into the proto- 
types. 

OGRE (CCC-46). - The OGRE code 
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A very general geometry subroutine permits the 
treatment of complicated geometries. This is essentially 
the same routine used in the 0 5 R  neutron-transport 
system (see above). Boundaries may be either planes or 
quadric surfaces, arbitrarily oriented and intersecting 
each other in arbitrary fashion. 

Cross-section data are prepared by an auxiliary master 
cross-section code (MASTAPE), which may be used to 
originate, update, or edit the master cross-section tape. 
The master cross-section tape is utilized in the OGRE 
codes to produce detailed tables of the macroscopic 
cross sections required for the Monte Carlo calculations. 

OGRE is available in FORTRAN I1 and IV languages 
for use on the IBM-7090 computer, in FORTRAN IV 
for IBM-360/50 and -360/75 computers, and in 
FORTRAN 63 and CODAP for the CDC-1604 and 
CDC-3600 computers. 

Cross-section routines are now available to read 
ENDF/B format. 

ADONIS (CCC-l3A,B), UNC-SAM and UNCSAM-2 
(CCC-Sl), UNC-SAM-3 (CCC-133). - The United Nuclear 
Corporation stochastic approximation method, devel- 
oped originally  SADO ON IS'^' and later as UNCSAM,’66 
calculates the solution to the Boltzmann transport 
equation in three-dimensional geometry by Monte Carlo 
methods. ADONIS tracks either neutrons or gamma 
rays through shields composed of rectangular parallele- 
pipeds of different compositions. Particle splitting is 
used to improve the efficiency of the calculation by 
assigning importance weights to each of the regions. 
The program computes fluxes and their standard 
deviations in each of up to 8 0  regions. By use of 
response functions the dose and strength of secondary 
gamma rays from any neutron-induced reaction can be 
computed throughout the configuration. UNC-SAM will 
calculate fluxes, flux-dependent functionals such as 
doses, and their standard deviations in geometry com- 
prised of rectangular parallelepipeds, which in turn, 
may contain spheres, cylinders, parallelepipeds, or 
wedges. Importance sampling is used to increase effi- 
ciency. In evaluating neutron fluxes in small-volume 
detectors, a scoring by analytical estimation, referred to 
as “flux at a point,” is used. 

A modified version of UNC-SAM, identified as 
UNC-SAM-2,’ treats time-dependent neutron and 
photon transport through matter. 

ADONIS versions are available in FORTRAN-FAP 
language for the IBM-7090 and -7094 computers 
(CCC-13A) and in FORTRANCODAP language for the 
CDC-I604 computer (CCC-I3B). 

UNC-SAM and UNCSAM-2 are written in FORTRAN 
63 language and are operable on the CDC-1604 com- 
puter. 

UNCSAM-3 is a modified program16’ for the 
CDC-1604 and CDC-6600 computers which accepts a 
revised cross-section format.’ The cross sections are 
prepared by ENDT from ENDF/B tapes. 

was 
developed by Mathematical Applications Group, Inc., 
White Plains, New York; U.S. Army Ballistic Research 
Laboratory, Aberdeen Proving Ground, Maryland; and 
U.S. Army Nuclear Defense Laboratory, Edgewood 
Arsenal, Maryland. I t  calculates the time-dependent 
transport of neutrons or gamma rays through complex 
three-dimensional geometrical configurations. The code 
calculates the total flux in each region in a specified 
group of energy and time bins, and it can also compute 
fluxes at specified points within the geometry. 

SAMC is based on the UNCSAM-2 Monte Carlo 
program, the primary difference being in the techniques 
employed to describe the geometry. SAMC uses com- 
binatorial geometry and is therefore capable of repre- 
senting more complex assemblies. To  use this geometry 
capability necessitated a number of modifications in the 
logic and storage requirements of UNCSAM-2. In 
addition, a ray-tracing volume calculation routine was 
added, since for many of the shapes produced by the 
combinatorial geometry it is impractical to determine 
the volume analytically. All the nuclear interaction 
routines of UNCSAM-2 are unchanged. 

Combinatorial geometry is a new and significant 
advance in the state-of-the-art of representing, in a 
computer, a complex three-dimensional structure. In 
effect, one represents a structure such as an armored 
tank in terms of sums, differences, and intersections of 
relatively simple bodies such as spheres, cylinders, etc. 
The input for such a description consists of the 
geometric location of the simple bodies and their 
dimensions, followed by a region definition table 
consisting of a series of equations defining each 
particular region of the structure in terms of the basic 
bodies. For example, if the total structure is a tank, 
then one region would be the gun barrel, which might 
be represented as the material located between two 
concentric cylinders. 

Versions of SAM-C are available for the IBM-360, 
CDC-1604 and CDC-6600 computers. 

AMC (CCC-90). - The Oak Ridge National Labora- 
tory program AMC (forAlbedoMonte Carlo) calculates 
the transmission of neutrons and their concomitant 
capture gamma rays through large concrete-walled 
rectangular ducts of varying complexity to establish 
design criteria for entryway shielding against initial 
weapons radiation.’ 72 AMC can be used to calculate 
the fluxes and dose rates inside the ducts due to neu- 
trons of all energies incident upon the duct mouth, and 

SAM-C (CCC-114). - The code 
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an option in the code allows a simultaneous calculation 
of the secondary gamma-ray dose rates arising from wall 
capture. The code treats duct transmission by 
employing the albedo concept in conjunction with a 
Monte Carlo treatment of history generation. 

In its present form the code can calculate the 
fast-neutron dose rates, epicadmium differential energy 
fluxes, thermal fluxes, and wall-capture secondary 
gamma-ray dose rates arising from an arbitrary incident 
neutron source for the following concrete-walled rec- 
tangular structures: (1) a completely enclosed room, (2) 
an open straight duct or a straight duct closed at one 
end, (3) an open or closed two-legged duct with one 
right-angle bend, (4) an open or closed three-legged 
duct with two right-angle bends, ( 5 )  a three-legged duct 
which has two right-angle bends, is open or closed at  
the mouth and opens into a room at the end of the 
third leg, and (6) the geometries given by 3-5 with the 
first leg sloping downward, the mouth and the re- 
maining legs being horizontal. AMC operates on the 
IBM -360/75 computer. 

FASTER (CCC-98). - The Monte Carlo program 
is the result of a cooperative effort 

by Westinghouse Astronuclear Laboratory, Pittsburgh, 
Pennsylvania; NASA George C. Marshall Space Flight 
Center, Huntsville, Alabama; ART Research Corpora- 
tion, Los Angeles, California; Aerojet General Corpora- 
tion, Sacramento, California; and the Boeing Company, 
Huntsville, Alabama. 

FASTER calculates energy-dependent neutron or 
photon fluxes at points, on surfaces, and in regions of 
complex geometries. The general quadric surface equa- 
tion describes the geometry. Equations for planes, 
cones, elliptical cylinders and ellipsoids can also be used 
as input description of the surfaces. The source is 
described in rectangular, cylindrical, or spherical co- 
ordinates. The spatial, angular, and energy source 
description is assumed to be separable. 

FASTER treats the entire spectrum of particle 
energies simultaneously, which eliminates much of the 
usual repetitive geometric computations resulting in 
significant computer time savings. Sampling all possible 
scattering energies for each collision and extensive 
importance sampling reduces the variance. For neutron 
transport, using group cross sections results in addi- 
tional time savings. 

Distinctive features of the Monte Carlo method as 
employed in the FASTER program include: (1) applica- 
tion of random sampling to the spatial and angular 
integrations only, (2) consistent use of energy-averaged 
sampling functions, (3) approximation of importance 
functions by point kernel techniques, (4) analytic 
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treatment of the energy variable over its entire range, 
and (5) zero variance energy integration of the scattered 
source equations. 

Versions of FASTER are available for the IBM- 
7090/94, the IBM-360/75, and the UNIVAC-1108 
computers . 

AIRTRANS (CCC-110). - The function of the 
AIRTRANS system,’ 7 6 3 1  77 developed by United Nu- 
clear Corporation, Elmsford, New York, and Lockheed 
Missile and Space Company, Sunnyvale, California, is to 
calculate by Monte Carlo methods the radiation field 
produced by neutron and/or gamma-ray sources which 
are located in the atmosphere. The radiation field is 
expressed as the time- and energy-dependent flux at a 
maximum of 50 point detectors in the atmosphere. The 
system calculates uncollided fluxes analytically and 
collided fluxes by the “once more collided flux-at-a- 
point” technique. 

Energy-dependent response functions can be applied 
to the fluxes to obtain desired flux functionals, such as 
doses, at the detector point. AIRTRANS also can be 
employed to generate sources of secondary gamma 
radiation. 

Neutron interactions treated in the calculational 
scheme include elastic (isotropic and anisotropic) scat- 
tering, inelastic (discrete level and continuum) scat- 
tering, and absorption. Charged-particle (n,p)  reactions 
are treated as absorptions. A built-in kernel option can 
be employed to take neutrons from 150 keV to thermal 
energy, thus eliminating the need for particle tracking 
in this energy range. Another option used in conjunc- 
tion with the neutron transport problem creates an 
“interaction tape” which describes all the collision 
events that can lead to the production of secondary 
gamma rays. This interaction tape subsequently can be 
used to generate a source of secondary gamma rays. 

The gamma-ray interactions considered include 
Compton scattering, pair production, and the photo- 
electric effect; the latter two processes are treated as 
absorption events. 

Incorporated in the system is an option to use a 
simple importance sampling technique (splitting) for 
detectors that are many mean free paths from the 
source. In essence, particles which fly far from the 
source are split into fragments, the degree of fragmenta- 
tion being proportional to the penetration distance 
from the source. Each fragment is tracked separately, 
thus increasing the percentage of computer time spent 
following particles at the deep penetration. Each 
fragment is assigned a “weight” which is inversely 
proportional to the degree of fragmentation suffered by 
the original source particle. All estimates of flux 



contributions by such a fragment are then multiplied by 
its assigned weight. 

The code is available for the CDC-1604 and UNIVAC- 
1108 computers. 

GADJET (CCC-115). - The GADJET 
was developed by Radioptics, Inc., Plainview, New 
York; U.S. Naval Radiological Defense Laboratory, San 
Francisco, California; and the Office of Civil Defense, 
Washington, D.C. It  is designed to calculate the effec- 
tiveness of structures (of arbitrary complexity) in 
shielding against gamma rays from fallout fields (finite 
or infinite) and to calculate the relative importance of 
each fallout region in contributing to the exposure rate 
in the structure. Complex realistic structures can be 
assumed, with windows, sills, black surfaces, etc., being 
allowed, 

The code solves by Monte Carlo the adjoint transport 
equation for the so-called “importance” function. A 
knowledge of the importance function, coupled with 
the source distribution, solves the problem of deter- 
mining the response of an arbitrary gamma-ray detector 
located in a structure that is exposed to fallout 
gamma-ray sources. 

GADJET handles the transport of photon energy 
through matter having a three-dimensional geometry 
composed of rectangular parallelepipeds, which, in turn, 
may contain spheres, cylinders, parallelepipeds, or 
wedges. The geometry routines are based on those used 
in the UNC-SAM-1 code with only minor modifica- 
tions.’ 

A CDC-6600 version of GADJET is available. 
ANTE (CCC-131). - The ANTE code,’ developed 

by Mathematical Applications Group; lnc. (MAGI), is 
designed to treat the time-dependent neutron transport 
equation in a three-dimensional geometry by the 
adjoint Monte Carlo technique, which is especially 
effective for point detectors and distributed sources. An 
important feature of ANTE is the powerful geometric 
capabilities of the combinatorial geometry system. 
Additional code improvements implemented in the 
ANTE 2 version include a treatment of the fission 
process, the (n,3n) and (n,n‘3a) reactions, detector 
regions distributed in space, and increased geometrical 
scoring capabilities. The cross-section routines read 
ENDF/B data and provide adjoint cross sections for the 
Monte Carlo routines. 

ANTE is written in FORTRAN IV for the CDC-6600 
computer. 

ETRAN (CCC-107). - The ETRAN code,’81”8z 
developed by the Center for Radiation Research, 
National Bureau of Standards, Washington, D. C., 
computes by Monte Carlo methods the transport of 
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electrons and photons through plane-parallel semi- 
infinite slabs. The incident radiation can consist of a 
beam of either electrons or photons with specified 
spectral and directional distribution. Options are avail- 
able by which all orders of the electron-photon cascade 
can be included in the calculation. Thus electrons are 
allowed to give rise to secondary knock-on electrons, 
continuous bremsstrahlung, and characteristic X rays, 
and photons are allowed to produce photoelectrons, 
Compton electrons, and electron-positron pairs. Anni- 
hilation quanta, fluorescence radiation, and Auger 
electrons are also taken into account. Also, the Monte 
Carlo histories of all generations of secondary radiations 
can be followed. 

The information produced by ETRAN includes the 
following items: (1) the reflection and transmission of 
electrons or photons differential in energy and direc- 
tion; (2) the production of continuous bremsstrahlung 
and characteristic X rays by electrons and the emer- 
gence of such radiations from the target (differential in 
photon energy and direction); (3) the spectrum of the 
amounts of energy left behind in a thick target by an 
incident electron beam; (4) the deposition of energy 
and charge by an electron beam as a function of the 
depth in the target; and ( 5 )  the flux of electrons, 
differential in energy, as a function of the depth in the 
target. 

The photon component of the electron-photon cas- 
cade is calculated by conventional random sampling 
that imitates the physical processes of Compton scat- 
tering, photoelectric absorption, and pair production. 
In the calculation of the electron component, no 
attempt is made to follow successive individuaI inter- 
actions with atoms and atomic electrons because these 
are too numerous. Instead, a Monte Carlo model is used 
in which attention is focused on the effect of groups of 
successive collisions. 

The electron tracks to be sampled are divided into a 
large number of short segments, and the energy loss and 
angular deflection in each segment are sampled from 
pertinent theoretical multiple scattering distributions. 
At the end of each short step, the direction of motion 
of the electron is changed by a multiple scattering 
angular deflection that is sampled from the Goudsmit- 
Saunderson distribution. This distribution is assumed to 
be the same for all short steps lying within a given step. 
The energy loss in a step, resulting from the cumulative 
effect of many inelastic collisions, is sampled from a 
distribution that is a convolution of a Landau distribu- 
tion with a Gaussian. An option is also provided for 
using the continuous-slowing-down approximation in 
which energy-loss fluctuations are disregarded and the 
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energy loss by collisions is simply computed with the 
use of the stopping-power formula. 

The production of knock-on electrons is sampled in 
each short step with the use of a probability distribu- 
tion derived from the Moller cross section for collisions 
between free electrons (binding effects are disregarded). 
Histories of these particles are then followed by 
procedures identical with those used for the primary 
electrons. 

The production of continuous bremsstrahlung pho- 
tons is sampled in each short step with the use of a 
probability distribution derived from the bremsstrah- 
lung cross section (Bethe-Heitler theory with modifica- 
tions taking into account the correct high-frequency 
limit, empirical corrections, etc.). The probability is 
usually quite small that more than one bremsstrahlung 
photon will be produced in a single short step. 
Allowance is made for such a contingency by sampling 
the frequency of bremsstrahlung production events 
from a Poisson distribution. The energy of the second- 
ary bremsstrahlung photons is subtracted from the 
energy of the electrons producing them. Thus photon 
emission contributes to the energy-loss straggling of the 
electrons. The photons are started out at a random 
position in the short step in a direction relative to that 
of the primary electron specified by the sampled 
intrinsic bremsstrahlung emission angle. For problems 
in which the production of thick-target bremsstrahlung 
is of prime interest, there is an option to increase the 
rate of occurrence of bremsstrahlung events artifically 
by a specified factor. 

The production of secondary characteristic X rays in 
each short step is sampled with the use of the 
K-ionization cross sections of Arthurs and Moiseiwitsch 
and Kolbenstvedt. 

The program is arranged so as to treat simultaneously 
many slab targets with different thicknesses. 

Boundary crossings (transmission and reflection) 
usually occur in the middle of a short step. The energy 
with which the electron crosses the border is deter- 
mined by subtracting from the energy at the beginning 
of the step an energy loss sampled from the Landau- 
Blunck-Leisegang distribution for the fraction of the 
step taken to the boundary. The direction at  the time 
of crossing is determined by changing the direction of 
motion at  the beginning of the short step involved, 
using a deflection sampled from an exponential approxi- 
mation to the Goudsmit-Saunderson distribution for 
the fraction of the short step to  the boundary. 

The target is subdivided into many thin sublayers of 
equal thickness, and the energy deposited in each 
sublayer is recorded for each sampled track. The energy 

allowed to be deposited is that dissipated by electrons 
in inelastic collisions resulting in the production of slow 
secondary electrons with energies below the chosen 
cutoff value. The energy given to fast secondary 
electrons with energies above the cutoff is not im- 
mediately scored, because the histories of these elec- 
trons are followed further so that the energy may 
eventually be deposited in a sublayer different from the 
one in which the electrons were produced. Bremsstrah- 
lung losses are similarly not scored immediately. Pho- 
tons are allowed first t o  penetrate further through the 
medium so that the energy of the electrons set in 
motion by them may eventually be deposited in a 
different sublayer. 

The treatment of charge deposition is quite similar to 
that of energy deposition, involving the scoring of 
charge deposited in sublayers. A track is assumed to 
“end” when*the residual range of the electron is so 
small compared to the size of the sublayers that escape 
to a different sublayer is no longer possible. When 
secondary electrons are produced, either as the result of 
a knock-on collision, a Compton scattering or a 
photoelectric absorption, a unit charge is withdrawn 
from the sublayer in which the electron is born. The 
charge is then allowed to be carried to a different 
sublayer. Electron-positron pairs are excluded from this 
scheme because on the average their production does 
not lead to a net transfer of charge. 

A Monte Carlo estimate of the flux is obtained by 
dividing the target into many sublayers and scoring the 
tracklength of electrons with specified energies in each 
of the sublayers. The average tracklength per incident 
electron divided by the thickness of the sublayer 
provides an estimate of the average flux in the sublayer. 

The flux calculation includes primary as well as 
secondary electrons with energies down to some cutoff 
value which is chosen so that the electron is effectively 
trapped in the sublayer in which it finds itself because 
its residual range is smaller than the distance to the 
nearest sublayer boundaries. 

IBM-360/75/91 and UNIVAC-7108 versions of 
ETRAN are available. 

BETA (CCC-117). - BETA,’ developed by A.R.T. 
Research Corporation, Los.Angeles, California, and Air 
Force Weapons Laboratory, Albuquerque, New Mexico, 
is a Monte Carlo program for bremsstrahlung and 
electron transport analysis in generalized three- 
dimensional geometry. Relatively high-energy electrons 
and bremsstrahlung are treated explicitly over the 
energy range 0.1 to 15 MeV. Arbitrary sources are 
handled as functions of energy, time, space, and angle. 
Point, surface, and volume detectors are considered. 



The effects of electric fields due to  charge buildup are 
treated. 

Results from BETA include energy deposition, time 
dependence of energy deposition, and charge trapping. 

BETA uses random sampling techniques t o  perform 
the integrations of the order-of-scattering equations t o  
give the unscattered and scattered components of the 
flux. Electron transport considers electron-nucleus, 
electron-electron, and electron-bremsstrahlung scat- 
tering. Wide angle scatterings are considered explicitly 
while narrow angle scatterings are grouped and the net 
effect lumped together. Klein-Nishina scattering is 
considered for photon transport. BETA will recognize 
simple surfaces such as planes, cones, elliptic cylinders 
and ellipsoids in specifying the geometry. Multiple- 
energy and angular-dependent sources in rectangular, 
cylindrical, and spherical geometry may be considered 
with the geometry of each source being superimposed 
over the various geometric regions. Flux estimation at 
points, on surfaces, and in volumes is accomplished by 
summing contributions from all order-of-scatter com- 
ponents. Legendre moments of the angular flux are used 
t o  construct azimuthally averaged differential angular 
fluxes. The time dependence is obtained by computing 
temporal moments and then analytically regenerating 
temporal dependence from these moments. 

BETA is written for the IBM-7090/94 computers. 

3B.3. PROGRAMS BASED ON KERNEL 
INTEGRATION 

QAD (CCC-48). - The QAD point-kernel code 
system' was developed by Los Alanios Scientific 
Laboratory for calculating fast-neutron and gamma-ray 
penetration in various shield configurations. In the 
gamma-ray calculation the point kernel method involves 
representing the gamma-ray source by a number of 
point isotropic sources and computing the line-of-sight 
distance from each source point to the detector point. 
From the distance through the shielding regions and the 
characteristics of the shielding materials, the geometric 
attenuation and material attenuation are calculated. 
The energy transferred along the line of sight is then 
calculated on  the basis of  this attenuation and the 
appropriate buildup factor to account for the scattered 
radiation. With a distributed source the point kernel 
including the buildup factor is integrated over the 
source volume for each source energy considered. 

The neutron-penetration calculation is made using a 
kernel obtained from the moments-method solution to  
the Boltzmann equation which has been fit by an 
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exponential expression. In this method the neutron 
spectrum penetrating a shield is determined o n  the basis 
of equivalent length of a reference material between the 
source point and the receiver point. The equivalent 
length is calculated by  weighting the  penetration 
distance for each material in accordance with the 
material removal cross section. Provisions are also made 
for computing an alternate neutron dose rate based on 
the Albert-Welton kernel. 

The input data consist of a description of the source 
distribution and intensity by  a number of point 
isotropic sources, a mathematical representation of the 
physical geometry with quadratic surfaces, and the 
tabulation of attenuation coefficients, buildup factors, 
and conversion factors. 

There are several versions of QAD: 

1.  QAD-IV, the general-purpose basic QAD prototype, 
which estimates the uncollided gamma-ray flux, dose 
rate, and energy deposition a t  specified detector 
points, and also the fast-neutron dose, 

2. QAD-PS, which incorporates a technique for inter- 
polating the results of neutron calculations, has 
additional source description routines, and has a n  
increased number of output  options, 

3. QAD-HD (ref. 185), which evaluates the heat deposi- 
tion and temperature rise of the propellant and the 
dose t o  a crew during nuclear rocket reactor 
operation, 

4. QAD-PSA, another version of QAD-PS, which in- 
cludes a built-in library of gamma-ray attenuation 
coefficients, buildup factor coefficients, neutron 
removal cross sections, and neutron moments- 
method spectra coefficients, 

5. QAD-INT, which calculates gamma-ray heating rates 
within a source region or in a semi-infinite region 
surrounding the source zone, as well as unscattered 
and total fluxes and dose rates, 

6. QAD-V, which permits heating calculations with a 
two-dimensional integration scheme, 

7. QAD-B, which is an expanded version of QAD-PS 
with a simplified input format and a more detailed 
output  format and which includes a data library of 
many of the required input parameters. 

All codes in  the QAD system are available in 
FORTRAN IV language for use on  IBM-7090 and -7094 
computers. QAD-PS is in addition available in 
FORTRAN I1 for use on IBM-7090 and -7094 com- 
puters, and in FORTRAN IV for the IBM-360 and 
UNIVAC-1108 computers. 
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SDC (CCC-60). - The SDC code,’86 developed by 
Oak Ridge National Laboratory, is designed to calculate 
the gamma-ray shielding requirements for chemical 
processing, fabrication, or fuel handling facilities. I t  will 
handle 13 source geometries (point, line, disk, plane, 
slab, cylinder with shield at side, cylinder with shield at 
end, sphere, ring, rod cluster, skew line, annular 
cylinder with shield at side, and annular cylinder with 
shield at end) either unshielded or shielded by slab 
shields. Materials of construction for shield, cladding, or 
source volume may be selected from a list of 17. As 
many as 12 gamma-ray energy groups, covering an 
energy range of 0.10 to 10 MeV, with corresponding 
source strengths, may be used to describe the gamma- 
ray spectrum. 

Integration of the basic exponential attenuation point 
kernel over the various geometries provides the uncol- 
lided gamma-ray flux in SDC. Speed is achieved by 
utilizing many of the integrations found in Rockwell.’ ’ 
Biological dose rate was obtained by multiplying this 
uncollided flux by the product of a flux-weighted 
buildup factor and a dose-conversion factor. Two major 
options in the code permit calculation of (1) required 
shield thickness when a dose-rate level is specified, or 
(2) dose rate when the shield thickness is given. 
Calculation of dose rates from unshielded sources as 
well as surface intensities for cylinders and spheres is 
also included. 

are 
given in terms of photon-emission rates for each group, 
gamma-ray energy emission rates for each group, total 
gamma-ray emission rate, total gamma-ray energy emis- 
sion rate, beta particle emission, total average beta-ray 
energy emission rate, and total energy release rate. 

The code is available on the CDC-1604, IBM-7090/94 
and -360 computers. 

ISOSHLD (CCC-79). - ISOSHLD, a code’ ’-’ 
developed by Battelle Memorial Institute, Pacific North- 
west Laboratories, calculates the decay gamma-ray and 
bremsstrahlung dose at the exterior of a shielded 
radiation source. The source may be one of a number of 
common geometric shapes. If the radiation source 
originates as one or a group of fission products 
produced under known irradiation conditions, then the 
strength of the source is also calculated. The code 
calculates shield region mass attenuation coefficients, 
buildup factors, and other basic data necessary to solve 
the specific problem. 

ISOSHLD performs kernel integration for common 
geometric shapes. The “standard” point attenuation 
kernel (buildup factor times the exponential attenua- 
tion divided by the geometry factor) is numerically 

Results from PHOEBE, an auxiliary routine,’ 

integrated over the source volume for 25 source energy 
groups. Buildup is considered to be characteristic of the 
last shield region (or a different specified region) but 
dependent on the total number of mean free paths from 
source to dose point, and is obtained by interpolation 
based on the effective atomic number in a table of 
point isotopic buildup factor data. Mixed mass attenua- 
tion coefficients are obtained from a library of basic 
data using code input material density specifications. 
The source strength may be specified ( I )  as the 
emissions from a selection of fission products irradiated 
under specific conditions, (2) as the curies of particular 
fission and/or activation products, or (3) as a number of 
photons per second of energy E specified by input. An 
exponential source distribution may be specified for 
those source geometries which are applicable. If the 
source originates in a combination of fission products 
and their daughters, these are calculated by a fission- 
product inventory procedure which runs through trans-, 
mutation (decay chain) calculations for each fission 
product and daughter. A modification (ISOSHLD. 
11)’ adds the capability for calculating shielded dose 
rates from bremsstrahlung sources. This addition con- 
sists of routines for calculating the bremsstrahlung 
source spectra from the beta decay properties of the 
isotope(s) of interest. Bremsstrahlung photons per 
group for 25 energy groups (9 groups below 0.1 MeV 
have been added) are obtained by interpolation from 
tables of resolved spectra. This spectral mesh, for 
internal and external bremsstrahlung, is tabulated as a 
function of the following parameters: beta-emitting 
and stopping nuclides with atomic numbers of 10,30,50, 
70, and 90; ratios of photon energy to beta endpoint en- 
ergy for 25 intervals from 0.00375 to 1.0; beta endpoint 
energies at the intervals 0.1, 0.2, 0.5, 1 ,  2, and 4 MeV. 
Buildup factors for photon energies less than 0.1 MeV 
are interpolated in a table which contains data for 5 
values of initial photon energy in the range 0.01 to 0.2 
MeV, seven values of shield thickness in the range 1 to 
20 mfp, and 6 atomic numbers in the range 1 3  to 92. 

A second modification (ISOSHLD 111) was made to 
include an updated photon probability library.’ ’ y 1  

The entire shielding problem is solved for most types 
of isotope shielding applications without reference to 
shielding handbooks for basic data. Versions of 
ISOSHLD are available for IBM-7090/94 and -360 
computers and for the UNIVAC-1108 computer. 

PLUME (CCC-99). - PLUME,’ 9 4  developed by Oak 
Ridge National Laboratory, makes estimates of certain 
internal and external radiation doses delivered to 
receptors exposed to a cloud of radioactive effluent for 
various periods of time and at various locations relative 
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to  the point of emission (the stack at the site of a reactor 
accident). The internal dose considered is the thyroid 
dose due to the inhalation of iodine. The external doses 
are upper limits to the whole body doses to  be expected 
from iodine and noble gases floating downward from 
the reactor site. 

It is assumed that volatile fission products are released 
into a reactor containment volume via a reactor 
accident, that the fission products are mixed instanta- 
neously with the building air, and that the homo- 
geneous mixture is emitted to the atmosphere at a 
constant rate through a stack. The concentration of 
radioisotopes downwind is expressed in terms of the 
product of the “stack factor,” which contains informa- 
tion on atmospheric dispersion, and a “source term” 
containing information on the rate of emission, decay, 
and dilution within the building. The atmospheric 
dispersion is estimated by the Gaussian plume formula 
corrected for ground reflection and the presence of a 
thermal inversion layer. Meteorological data are built 
into the program which allows the plume description 
for various stability conditions and wind velocities. The 
source terms available in the code allow for treatment 
of iodine isotopes (neglecting iodine daughters), treat- 
ment of noble gases with solid daughters removed by 
filtering, and treatment of noble gas daughters of iodine 
parents removed by filtering. 

The internal dose is taken as that due to inhalation of 
iodine parents only and involves the evaluation of an 
expression which is the time integral of the concentra- 
tion multiplied by appropriate factors. The external 
dose requires an integration of the time-integrated 
concentrations over the plume volume, with appro- 
priate gamma-ray buildup factors being used. The 
program uses a Gauss-Hermite quadrature scheme on 
the y-integration and a Gauss-Legendre quadrature 
scheme on the x- and y-integrations. 

PLUME is operational on the IBM-360/75 computers. 

SPACETRAN (CCC-120). - SPACETRAN,106 devel- 
oped by Oak Ridge National Laboratory, is designed to 
calculate the energy-dependent total flux, or some 
proportional quantity such as lierma, due to the 
radiation leakage from the surface of a right-circular 
cylinder at detector positions located arbitrary dis- 
tances from the surface. In two published versions, 
SPACETRAN I and SPACETRAN 11, the assumption is 
made that the radiation emerging frqm the finite 
cylinder has no  spatial dependence. In an unpublished 
version, SPACETRAN 11, spatial dependence is allowed. 
The source input is the leakage current calculated by 
DOT. 

SPACETRAN-I uses the surface angular fluxes calcu- 
lated by the discrete ordinates S, code, CCC- 
82/ANISN, as input. SPACETRAN-I1 assumes that the 
surface angular flux for all energies can be represented 
as a function COP@,  where @ is the angle between the 
surface outward normal and the radiation direction, and 
n is an integer specified by the user. 

For both versions the energy group structure and the 
number and location of detectors are arbitrary. The 
flux (or a flux-dependent functional) for a given energy 
group at some detection point is computed by summing 
the contributions from each surface area element over 
the entire surface. The surface area elements are defined 
by input data. 

SPACETRAN-I handles contributions either from a 
cylinder “end” or “side,” so the total contribution must 
be obtained by adding the results of separate end and 
side runs. ANISN angular fluxes are specified for discrete 
directions. In general, the pathway between the detec- 
tor and the contributing area will not exactly coincide 
with one of these discrete directions. In this case, the 
ANISN angular flux for the “closest” discrete direction 
is used to approximate the contribution to the detector. 

SPACETRAN-I1 handles contributions from both the 
side and end of a cylinder in a single run. Since the 
assumed angular distribution is specified by a con- 
tinuous function, it is not necessary to perform the 
angle selection described above. 

For each detector specified, both versions compute 
the flux and a response proportional to the flux in each 
energy group and also compute the sum of these 
quantities over all energy groups. 

The code is operational on the IBM-360 computer. 
KAP-V (CCC-94). - The KAP-V code,’ ’-’ de vel- 

oped by Westinghouse Astronuclear Laboratory, Pitts- 
burgh, Pennsylvania, and NASA George C.  Marshall 
Space Flight Center, Huntsville, Alabama, is part of a 
system of codes for shield design called “Synthesis of 
Calculational Methods for the Design and Analysis of 
Radiation Shields for Nuclear Rocket Systems.” The 
codes in this system are packaged by RSIC as CCC-94 
through CCC-98. The programs in CCC-94, CCC-95, and 
CCC-96 are termed by the originators as the “early” 
design method. 

The U P - V  code calculates neutron and/or gamma 
radiation levels at detector points located within or 
outside a complex radiation source geometry describ- 
able by a combination of quadratic surfaces. A variety 
of options are available for describing cylindrical, 
spherical, disc, line, or point sources or source distribu- 
tions in complex geometries. The output can be flux, 
dose, or heating rate. 



The attenuation function, or kernel, for gamma rays 
employs exponential attenuation with a buildup factor. 
Three optional fast-neutron attenuation functions are 
included: ( 1 )  a modified Albert-Welton function for 
calculating fast-neutron dose rate using removal cross 
sections, (2) a bivariant polynomial expression for 
computing neutron spectra using infinite-medium- 
moments data, and (3) a monovariant polynomial 
expression for computing neutron spectra using infinite- 
medium moments data. 

The KAP-V is operational on the IBM-7090/94 
computers. 

3B.4. PROGRAMS BASED ON SPINNEY 
REMOVAL-DIFFUSION METHOD 

MAC and MAC-RAD (CCC-22). - The MAC 
code,' >' 9 8  originally developed by Hanford Atomic 
Products Operation and placed with RSIC by Pacific 
Northwest Laboratory, Battelle-Northwest, calculates 
the neutron energy spectrum and dose rate and the 
gamma-ray dose rate as a function of distance through 
large reactor shields of concrete or hydrogenous ma- 
terial in slab geometry. The results are given as 
multigroup neutron fluxes for as many as 35 energy 
groups and as neutron dose rates, approximate neutron 
spectra, total gamma-ray dose rates (with a breakdown 
of the contribution from each region in the shield), and 
approximate gamma-ray spectra. 

The code is based on the Spinney method, which uses 
a high-energy kernel as the source of neutrons in a 
multigroup diffusion procedure. This kernel is propor- 
tional to the energy-dependent removal flux, which is 
calculated similarly to the uncollided flux except for 
the use of a removal cross section equal in magnitude to 
the usual transport cross section. The removal flux, 
divided into 18 groups, is calculated for neutrons above 
0.5 MeV. 

The diffusion equation is reduced to a system of three 
first-order differential equations which are numerically 
integrated. In the MAC code the boundary conditions 
are the diffusion flux at the core-shield interface and a 
zero incoming flux at the outside edge of the shield. In 
the MAC-RAD code,' 3 1  originated by Allgemeine 
Elektricitats-Gasellschaft, Kernenergie-anlagen at Frank- 
furt, Germany, the removal flux is added to the 
diffusion flux at the core-shield interface to obtain the 
input boundary value. In the first group the entire flux 
is removal flux. Secondary gamma-ray sources are 
discontinuous at boundaries. 

In both codes the gamma-ray dose rate is calculated 
for seven source energy groups by using buildup factor 
kernels. 

106 

MAC and MAC-RAD are available in FORTRAN I1 
language for use on the IBM-7090 computer. 
MAC-RAD is also operational on the IBM-360 and 
CDC-3600 computers. 

NRN ( C C C - 5 4 ) . - N R N , 1 3 4 ~ ' 3 5 3 2 0 0 ~ 2 0 1  asystemof 
codes developed by Aktiebolaget Atomenergi, Stock- 
holm, Sweden, is built around the Spinney method of 
combining high-energy exponential attenuation with 
low-energy diffusion. The high-energy exponentially 
attenuating flux is broken into several energy groups, 
each of which requires removal cross sections. 

Given a distribution of fissions (e.g., power distribu- 
tion) in certain allowed geometric regions, NRN solves 
for neutron flux densities, absorption rates (from which 
secondary gamma-ray source rates may be determined), 
dose rates, and energy deposit rates (by energy groups) 
in primary knock-on atoms. Two of its auxiliary 
routines, REBOX and REMC, can be adapted to  
compute gamma-ray dose rates from gamma-ray sources 
in the central region (core). 

The routine NECO computes all the required macro- 
scopic quantities, including removal cross sections, from 
the microscopic quantities and the material composi- 
tions. The calculation of removal cross sections is a 
unique feature of NRN. 

The exponential attenuation of the fast group fluxes 
(removal fluxes) is carried out by the REBOX routine if 
the source region is a parallelepiped or a large cylinder, 
and by the REMC routine if ?he source region is a 
sphere or a small cylinder. The integration over the 
source volume is carried out by a mesh-sum procedure 
in REBOX and by a Monte Carlo procedure in REMC. 

NEDI, a diffusion routine, uses as sources the removal 
fluxes in the shield region computed by REBOX or 
REMC. Since the geometry of NEDI is limited to 
multiregion infinite slabs, infinite cylinders, and 
spheres, there is a geometric inconsistency, except for 
the sphere, with REBOX and REMC. This is to be 
interpreted as an approximation, not an error. NEDI 
further provides for transverse bucklings in the slab and 
cylindrical cases in order to estimate the effect of 
truncating the infinite systems. NEDI solves the dif- 
fusion equation by preserving the form V.DV@, which 
would allow the cross sections within a region to be 
continuously varied, although no such provision for use 
of a spatially dependent D has actually been included. 

The specification of reasonable external boundary 
conditions in the shield region is relatively simple, but 
the specification of reasonable internal boundary con- 
ditions is very difficult. If a significant part of the final 
answer depends heavily upon the diffusion current or 
flux (rather than on the removal current or flux) at the 
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interior shield boundary, this program should be used 
only with great circumspection. 

NRN is available in FORTRAN IV and MAP lan- 
guages for use on IBM-7090 and -7044 and the 
CDC -3 600 computers. 

,2 O 2  is the 
latest one-dimensional code made available in a series of 
programs developed by the Shielding Groups of the 
Atomic Energy Research Establishment at  Harwell for 
calculating fast-neutron spectra, thermal-neutron flux 
densities, and secondary ganuna-ray dose rates for 
reactor shields in slab geometry. I t  uses the two-step 
Spinney removal-diffusion method of calculating 
neutron transport. The basic assumption is that the 
penetrating component from a point source can be 
calculated by a kernel given by 

COMPRASH (CCC-72). - COMPRASH’ 

where 

a0(E,R)  = removal flux density, 
f ( E )  = fission neutron spectrum, 

S = source normalization, 

C,(E) = energy-dependent removal cross section, 

R = distance from source. 

The removal source function 

is then made the source term in a conventional 
multigroup age-diffusion calculation to calculate the 
diffusing neutron spectra, including a thermal-neutron 
group. 

The value of the removal cross section is taken to be 
the usual transport cross section, an assumption that is 
justified by the remarkable success of the model in 
predicting the thermal-neutron flux densities measured 
in bulk concrete shields. 

The secondary gamma-ray transport is calculated with 
the use of an analytic form of the buildup factor. 

COMPRASH is written in FORTRAN I1 and FAP 
languages for use on the IBM-7090 computer and is 
operational on the CDC-3600 computer. 

SABINE (CCC-121). - SABINE,’ ,2 O 3  developed 
by the EURATOM Joint Nuclear Research Center, 
Ispra, Italy, determines the energy-dependent neutron 
flux and gamma-ray flux-dependent quantities as func- 
tions of distance through a reactor shield. The neutron 

source is a fission source arbitrarily distributed inside 
the core. The gamma-ray source may include fission and 
fission-product gamma rays in the core, and neutron- 
capture gamma rays in the core and shield. One- 
dimensional slab, spherical, and cylindrical source and 
shield regions may be treated in various combinations. 

The removal-diffusion method has been applied to 
calculate neutron fluxes. The gamma-ray dose is the 
product of the uncollided dose times a region- 
dependent buildup factor, which is interpolated from a 
table of values. 

Other quantities calculated include neutron response, 
gamma-ray dose and energy deposition. Particular atten- 
tion has been paid to the coupling of the removal bands 
to the diffusion groups. 

The code is operational on the IBM-360 computer. 
KDLIBE (CCC-124). - KDLIBE:04’2 O s  developed 

by the General Electric Company, Nuclear Systems 
Programs, Cincinnati, Ohio, is a shield-design system 
composed of nine separate codes and a data library. The 
nine codes are: 

1. 

2. 

3. 

4. 

5. 

6. 

QADRD - a modified QAD kernel code designed to  
compute uncollided or removal fluxes in three 
dimensions for up to 30 energy groups a t  specified 
receiver points in a source-held assembly. The 
removal fluxes are stored on tape, disks, or cards for 
later use. 

RAMP - a data processor to combine the multi- 
group removal neutron flux from QADRD with 
multigroup scattering cross sections to  produce 
source terms for input to the GEORGE multigroup 
diffusion code. 

GEORGE - a one-dimensional neutron diffusion 
code which can run in either of two modes: ( 1 )  
normal mode (space-independent buckling) with 
continuous slowing down and (2) transverse buck- 
ling mode. The code has a 20-group structure which 
includes one thermal-neutron group. 

GAMMIX - a g a m a - r a y  production cross-section 
processor which produces group macroscopic com- 
position cross sections for REORG. 

REORG - a data processor to combine diffusion 
fluxes from GEORGE, removal fluxes from 
QADRD, and gamma-ray production cross sections 
from GAMMIX to  produce gamma-ray sources for 
QADRR. 

QADRR - a modified QAD kernel code for general 
use or for calculating gamma-ray transport from 
sources produced by REORG. Modified Albert- 



We1 ton  fast-neutron kernels, buildup factors 
(including the Kalos formula), and other data are 
used. 

7. SURF - an uncollided and single-scattering code for 
analysis of thin structures. 

8. ZIP-I11 - a one-dimensional cylindrical neutron 
diffusion code with a matched savings algorithm 
limited to three diffusion groups for fast survey or 
parametric calculations. 

9. UPDONC - a data processor which prepares, dupli- 
cates, updates, adds, deletes, punches, graphs, and 
lists data on the nuclear data tape used by GEORGE 
and ZIP-111. 

The removal cross sections are similar to those of 
NRN. 

The original version of the KDLIBE system was for 
the GE-635 computer. 

ATTOW (CCC-132). ATTOW,’ O 6  developed by the 
United Kingdom Atomic Energy Authority, Risley, is a 
shielding code programmed in FORTRAN IV for the 
IBM-7090 computer. It solves the multigroup diffusion 
equations in two dimensions (r-z or x-y geometry) for 
nonmultiplying media. Any number of groups is 
allowed but neutron transfer is allowed only from 
higher groups to lower groups. There may be up to 100 
X 100 mesh points over a rectangle within which 
materials may be mapped out as required. Any distri- 
bution of neutron sources can be specified, derived if 
desired from the built-in removal program. Output 

108 

includes flux prints, neutron currents and detector 
activations. 

ATTOW was designed specifically as a two- 
dimensional shielding program with special facilities for 
source problems. As compared with previous codes, big 
economies in computing time were to be expected if all 
effects of a particular group on higher-energy groups 
were ignored: thus fluxes could be calculated in 
sequence, from top group downwards, without the need 
of an outer iteration round the groups. In addition, the 
total number of groups acceptable would be limited by 
running time rather than machine capacity. The only 
limitation this was expected to introduce in practice 
was that, if a core region were included, fission 
neutrons would have to be introduced in the form of a 
source distribution previously evaluated with some 
other program. 

The program expresses the diffusion equation in 
finite-difference form and solves it by iteration using 
accelerated successive line over-relaxation. I t  has been 
found that convergence is usually satisfactory over a 
range of about 12 decades. Problems with a greater 
range of attenuation often reach a solution, but 
sometimes fail to converge. 

Removal cross sections are input to the removal 
program, which allows the user control of the removal 
assumptions. The full energy transfer matrix is also 
assumed for the diffusion treatment. 

The original version of ATTOW is for the IBM-7090 
computer. 
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Appendix 3C. Derivation of Time-Dependent 
Discrete Ordinates Equations 

The derivation of the discrete ordinates equations in Section 3.3 is extended here to include time dependence. 
The formal starting point is the general time-dependent integrodifferential form of the Boltzmann transport 
equation, Eq. 3.1, rather than the steady-state form, Eq. 3.2. This equation includes an additional term, the storage 
term, and considers the full seven-dimensional phase space ( i ,E , f i , t ) .  The conservative one-dimensional form of Eq. 
3.1 can be written as 

The differential phase space cell is given by 4nrz dr dE dp  dt and the finite-difference cell becomes VI AEG acl, 
AtQ.* Following the same formal procedures used in Section 3.1, the following integral operator is applied t o  each 
term of Eq. C 1 : 

Integral Operator = / . € V I  /,€A,, [ € A f i ~  [€A,, 4nrz dr dE d p  d t  , 

The first application is t o  the storage term: 

/ , ,VI &,AEG i € A / . i ~  J € A f Q  1 4nr2 dr dE d p  d t  , 

which can be rewritten as 

The particle speed averaged over the G t h  group is defined as 

*Following the convention established in Sec. 3.3 ,  the subscript Q will refer to the Qth time interval and subscripts 4 + 1 and 4 

,9. will denote the endpoint values of the Qth  interval; i:e., A t ,  = tq+l  - 
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where 

and Eq. C3 becomes 

4n a 
-QG(r ,p , f )  r2 d r  dp dt . 

Using the mean value theorem (see Section 3.3 ,  Eq. 3.24)  for the evaluation of the r and p integrals, Eq. C 5  becomes 

The remaining integration over the time variable is accomplished in the following manner: 

where 

The effect of applying the integral operator to all the other terms in Eq. C1 is the same and thus will be 
illustrated by considering only the source term: 

Evaluation of the energy integral yields 

where 

The remaining integrations are performed using the mean value theorem with the result: 
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where 

_ _  - 
- 

SI, G , D ,  Q = S G ( ~ I  J*D JQ)  . 

Therefore the convective, removal, and inscattering terms are modified by adding the centered subscript (Q) t o  all 
discrete ordinate fluxes and the time increment At, occurs as a common factor. For  example, the modified removal 
term becomes 

Finally, the discrete ordinates equation, Eq. 3.59, is modified by  including the discrete ordinates storage term, 
Eq. C7, divided by  (ApD AtQ) and by adding the centered subscript (Q) t o  all other discrete ordinates fluxes and t o  
the source term: 

a 
8 

Noting that the f x e d  source and inscattering terms effectively involve only centered subscripts, the single source 
term S;,G,D,Q is introduced in their place, and Eq. C11 can be rewritten as 

The time-dependent discrete ordinates equation, Eq. C 12,  contains both centered and endpoint (space, direction, 
time) subscripts. Therefore (for the reasons presented in Sec. 3.3) three additional equations which relate the 
centered and endpoint fluxes are required. For  reasons of stability and generality, the weighted diamond difference 
equations are used:' 

(C 13b) 
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where A ,  B, and C will assume values such that positivity is assured and accuracy is enhanced. This deviates 
significantly from the steady-state procedure wherein A = B = 'A  (ordinary diamond difference) were used almost 
exclusively except for correction of negative fluxes when A = B = 1 (step diamond difference). 

Optimum values for A, B, and C are not obvious; however acceptable approximations are suggested by the 
following procedures. Equations C14 and C15 are substituted into Eq. C12, the resultant equation being an explicit 
expression for ai+ l ,G,D,Q:  

(C 16) 
- si, G , D ,  Q ' I + ' ,  ' I ,G ,D ,q+ '3  ' I , G , d , Q +  [ i D A i - ( l  ' I ,G ,D ,Q 

DO 
' i + l , G , D , Q  - 

Similarly, Eqs. C 13a and C 15 are substituted into Eq. C 12 to obtain an explicit expression for @I, G ,  d+ ,Q : 

Also, Eqs. C13a and C14 are substituted into Eq. C 12, yielding an explicit expression for @I,G,D,q+ : 

9 ( C W  
- s; ,G,D,Q ' I ' I C 2  ' i , G , D , Q + c 3 ' I , G , d , Q +  [ v I l v G A t Q - ( l - ~ D l l  ' I , G , D , q  - 

CDO 
@ I , G , D , ~ +  1 

where 

c1 = v I / v G  AT, c > 

C 2  = P D [ A i + A j - i  (1/A - 1)I > 

c 3  = B I , d / A k l D  + BI,d+ 1 

Do = xi, G VI + C1 ' ED A i +  1 / A  + BI, d+ 1 1 nr.cO 
D1 =Do - C1 , 

D2 = D O  - FD Ai+ 

D3 = D O  - BI,d+ 1 / 4 D B  ' 

- l)/AklD > 

7 

2 

If the previously calculated fluxes and the source term (which includes futed and inscatter sources) are positive, then 
all but the bracketed terms in the numerators of Eqs. C16, C17, and C 18 are always positive. Therefore to ensure 
positivity of the bracketed terms and thereby to ensure that the newly calculated fluxes are always positive, the 
following inequalities must be true: 

( 1 - A ) < F D A j / ( 2 i , G  '1' vI/vG A t Q c + B I , d + 1 / b D B ) 7  (C 19) 

Experience with time-dependent discrete ordinates calculations is limited; however two sets of approximate 
and is given as expressions* for A,  B, and C have been used with some success. The first set is due to Lathrop' 

follows: 

(1 - A ) = C , A j / ( C i , G  T / , + 2 v I / v G  A t Q + 2 B I , d + 1 / a ; D ) ,  (C22) 

*These expressions can also be interpreted as defining the relationships that must exist between the VI ,  ApD, and AtQ for given 
values o f A ,  B, and C. 
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Lathrop satisfied the inequalities defined by Eqs. C19-C21 by settingA = B = C = 'A  everywhere except within the 
factors ( 1  - A ) ,  (1 - B),  and (1 - C). Based on considerations of accuracy, it is desirable for the constants A ,  B, and 
C to be as close to 0.5 as possible (ordinary diamond difference). However using Eqs. C22-C24 usually leads to 
values for A, B, and C which are equal to or very nearly 1 .O. If the positivity of the entire numerator is considered in 
defining the inequalities, the constants A ,  B, and C so calculated may result in the numerators of Eqs. C16-Cl8 
being positive but very (vanishingly) small. This condition results in an unstable phenomenon similar to diamond 
difference breakdown (described in Sec. 3.3). 

To avoid the aforementioned instability and to calculate values for the constants closer to 0.5, inequality 
conditions intermediate to those already considered are required. Engle* O7 suggests that the combination of the 
source term and the bracketed term which occur in the numerators of Eqs. C16-C 18 be always positive. This leads 
to the second and preferred set of equations: 

An explicit expression for the centered flux QI, G , D ,  in terms of the endpoint fluxes @i,G,D, @I, c, d , Q ,  and 
@I,G,D,q is obtained by substituting the diamond difference equations, Eq. C13a ( p  > 0) or Eq. C13b ( p  < O),* Eq. 
C 14 and Eq. C 15 into Eq. C 12, yielding 

Equation C28 in addition to the diamond difference equations, Eqs. C 130 (p > 0), C 14, and C 15, is required for the 
numerical solution of a typical time-dependent problem. Given the endpoint fluxes @i,G,D, e ,  @ I , C , d , g ,  and 

, Q ,  
and @ I , G , D , q + l  are calculated by Eq.Cl3a ( p >  0) orC13b ( p <  O),C14, andC15 respectively. The constantsA, B, 
and C are determined from Eqs. C 2 2 4 2 4  or Eqs. C25-C27. 

The time-dependent problem is "initial valued" with respect to the time variable, and the calculation begins at 
zero or some initial time and proceeds sequentially through all the time increments in a single sweep. For a given 
energy group and time increment, the spatial and angle sweeps are converged before the newly calculated centered 
group fluxes are extrapolated to the next point in time and the energy sweep continued to the next lower energy 
group - and so on. I t  is noted that essentially a complete space-energy-angle problem (similar to the steady-state 
analysis described in Sec. 3.3) is solved for each time interval. However the time absorption effect significantly 
reduces the number of inner iterations required in a single time step. Also for many problems the projection of 
fluxes from the previous time step provides a good flux guess for the next time step and reduces the total running 
time to almost that for a steady-state problem. 

Eq. C28 is solved for the centered flux @II,G,D,Q, and the extrapolated fluxes *i+ ,, G,D, Q ,  @I. e, D ,  4 

*Equation C28 is derived for the (p> 0) i to i + 1 spatial mesh sweep. For p < 0, Eq. C28 is modified by interchanging the i and 
i + 1 subscripts and replacing &, by I&,[. 



Appendix 3D. Coefficients for Various Formulas 
Representing Gamma-Ray Buildup Factors 

This appendix consists of tabulations of coefficients 
for various formulas representing gamma-ray buildup 
factors (see Section 3.8.1) for the most common 
gamma-ray shielding materials. Tables 3D.1 and 3D.2 
give coefficients for the Taylor and polynomial forms as 
determined by Buscaglione and ManziniP4 and Tables 
3D.3 and 3D.4 give coefficients for the linear, quad- 
ratic, and Berger forms as determined by Trubey.67 In 
all cases, the coefficients for the elements are based on 
the buildup factors calculated by Goldstein and 
Wilkins,’4 and those for the four different concretes 
are based on the buildup factors reported by Walker 

and Grotenhuis,s’ which in turn are based on the 
Goldstein-Wilkins data. (An effective atomic number 
for the concrete mixture is determined, and its buildup 
factor is then that of the equivalent element .) 

Table 3D.5, which has been added in this revised 
version of the chapter, gives Berger formula coefficients 
for three of the concretes plus four other materials (air, 
sand, wood, and LiH). These coefficients, determined 
by Trubey,” ’ differ from those in Tables 3D.3 and 
3D.4 in that they are based on fits to buildup factors 
calculated specifically for these materials! 4-s 
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Table  3D.1. Coeff ic ients for the Taylor  Form of the Dose Buildup Factora 

Maximum Deviat ion 

a2 Material  E (MeV) A 

Water 

Aluminum 

Barytes  concrete '  

Ferrophosphorous 

concre te  ' 

Ordinary c onc re te' 

Magnetite concre te  

0.5 
1 
2 
3 
4 
6 
8 

10 

0.5 
1 

2 
3 

4 
6 

8 
10  

0.5 
1 
2 
3 
4 
6 
8 

10 

0.5 

1 
2 
3 
4 
6 

8 
10 

0.5d 
1 
2 
3 
4 
6 

8 
10 

0.5 
1 
2 

3 
4 
6 
8 

10 

100.845 
19.601 
12.612 
11.110 
11.163 
8.385 
4.635 
3.545 

38.91 1 
28.782 
16.981 
10.583 

7.526 
5.713 

4.716 
3.999 

33.026 
23.014 

9.350 
6.269 
4.730 
3.240 
2.167 
1.433 

61.341 

46.087 
14.790 
10.399 
6.240 
4.425 
3.000 
2.279 

38.225 
25.507 
18.089 
13.640 
11.460 
10.781 
8.972 
4.015 

75.471 
49.916 
14,260 
8.160 
5.580 
3.437 
2.480 

1.743 

0.12687 
0.09037 
0.05320 
0.03550 
0.02 543 
0.01820 
0.02633 
0.02991 

0.10015 
0.06820 
0.04588 
0.04066 
0.03973 
0.03934 

0.03837 
0.03900 

0.061 29 
0.062 55 
0.05700 
0.06064 
0.06500 
0.08000 
0.09514 
0.11 201 

0.07292 

0.05202 
0.04720 
0.04290 
0.05280 
0.05880 

0.06750 
0.07575 

0.14824 
0.07230 
0.04250 
0.03200 
0.02600 
0.01520 
0.01300 
0.02880 

0.07479 
0.05195 
0.04692 
0.04 700 
0.05200 
0.06000 

0.06645 
0.08082 

-0.1 0925 
-0.02 52 2 

0.01932 
0.032 06 
0.03025 
0.04164 
0.07097 
0.087 17  

-0.06312 
-0.02973 

0.00271 
0.0251 4 
0.03860 
0.04347 
0.04431 
0.041 30 

-0.02883 
-0.0221 7 

0.03850 
0.04440 
0.05883 
0.06407 
0.07857 
0.13021 

-0.05265 
-0.02845 

0.00867 
0.02211 
0.03765 
0.04262 
0.05730 
0.06438 

-0.10579 
-0.01843 

0.00849 
0.02022 
0.02450 
0.02925 
0.02979 
0.06844 

-0.05534 
-0.02796 

0.01 531 

0.04590 
0.05728 
0.11520 
0.14002 
0.27209 

-27.4, p = 1 0  
-10.8, p = 10 

4.2, p = 1 

1.7, p = 1 
0.8, p x  = 20 

-0.5, p = 2 

-0.7. /*x = 1 

-12.2, p = 10 

-5.2, p = 10 

0.6, p = 7 

-8.6, p = 10 

-2.5, p = 10 
1.8, p = 20 
1.6, p = 20 

-1.3, p = 15 
1.2, p = 20 

7.5, p = 2 

9.0, p = 2 
8.9, p = 20 

4.8, p = 20 
4.8, p = 2 
5.0, p = 2 
1.3, p = 20 
3.2, p = 20 

11.0, p = 2 

10.3, p = 2 
3.0, p = 2 

2.6, p = 20 
1.7, p = 2 

-1.0, p = 2 
0.8, p x  = 4 
0.4, p = 6 

-7.5, p = 4 
11.1, p = 2 
4.9, p x  = 2 
4.3, p = 2 

-5.1, p x  = 2 

-3.7, p = 2 
-2.2, px = 2 

15.9, p x  = 2 

-2.7, p x  = 2 

11.5, p = 2 
4.0, p~ = 2 
5.0, p x  = 2 
2.7, p = 2 
4.3, p x  = 4 

5.3, p x  = 20 
4.0, /LX = 20 
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Table 3D.1 (continued) 

p7 
A I  

Material  E (MeV) A -al a2 

Iron 

L e a d  

Tin  

T u n g s  ten 

Uranium 

0.5 
1 
2 

3 
4 
6 
8 

10 

0.Sd 
1 

2 
3 
4 
6 
8 

10 

0.Sd 
1 
2 
3 
4 
6 
8 

10 

o s d  
Id 
2d 
3 
4 
6 
8 

10 

o s d  
I d  
2d 
3 
4 
6 
8 

10 

31.379 
24.957 
17.622 
13.218 
9.624 
5.867 
3.243 
1.747 

1.677 
2.984 
5.421 
5.580 
3.897 
0.926 
0.368 
0.311 

11.440 
11.426 
8.783 
5.400 
3.496 
2.005 
1.101 
0.708 

2.655 
3.234 
3.504 
4.722 
5.520 
1.273 
0.664 
0.509 
1.444 
2.081 
3.287 
4.883 
2.800 
0.975 
0.602 
0.399 

0.06842 
0.06086 
0.04627 
0.04431 
0.04698 
0.061 50 
0.07 500 
0.09900 

0.03084 
0.03503 
0.03482 
0.05422 
0.08468 
0.17860 
0.23691 
0.24024 

0.01800 
0.04266 
0.05349 
0.07440 
0.0951 7 
0.13733 
0.17288 
0.19200 

0.01740 
0.04754 
0.06053 
0.06468 
0.08857 
0.17257 
0.2071 0 
0.2 1743 
0.02459 
0.03862 
0.03 997 
0.04950 
0.08240 
0.15886 
0.19189 
0.21314 

-0.03742 
-0.02463 
-0.00526 
-0.00087 

0.001 7 5 
-0.00186 

0.02123 
0.06627 

0.30941 
0.13486 
0.04379 
0.00611 

-0.02383 
-0.04635 
-0.05684 
-0.02783 

0.03 187 
0.01606 
0.01 505 
0.02080 
0.02598 

-0.01501 
-0.01 787 

0.01552 

0.11340 
0.13058 
0.08862 
0.01404 

-0.04570 
-0.12178 

0.04692 
0.05025 
0.35167 
0.22639 
0.08635 
0.00981 
0.003 70 
0.21101 
0.02 774 
0.02083 

Maximum Deviat ion 

(7db 

-6.5, p x  = 10 

-6.4, p = 10 
4.0, px = 2 

-3.0, px = 10 
-2.7, p = 10 

2.1, px = 20 

3.7, px = 2 

-1.0, p = 1 

3.8, px = 4 

-0.8, p = 10 

-0.6, px = 1 
1.3, p = 4 
1.4, p = 2 0  
1.3, px = 20 
1.8, p = 15 

-0.5, p = 1 

-1.6, px = 1 

-2.6, p = 10 
-2.8, p = 10 

4.3, p = 20 
-3.9, p = 10 

-3.4, px = 15 

-4.9, p = 2 
-0.9, p = 10 

2.1, p = 10 
-2.4, pi = 10 

-2.9, p = 15 

-2.8, p = 10 

2.6, p = 15 

1.3, px = 20 

1.4, p x  = 10 
-3:6, p = 15 
-0.9, px = 10 
-0.7, p = 10 

-0.5, p = 1 
-0.9, p = 15 

-2.2, p = 15 
-2.1, p = 15 

1.4, p = 4 

-2.9, p = 15 

aFrom ref. 64. 
bThe v a l u e s  of px given in  t h i s  column a r e  the  v a l u e s  for which the  corresponding errors  a r e  valid. 

‘Based on  bui ldup fac tors  for a n  ‘‘effective” a tomic  number ( s e e  text). 
< <  dFor some mater ia l s  the  va lues  of the  bui ldup factor  for given energ ies  a r e  known only in  the in te rva l  of 1 = p x  = 

15. In t h e s e  c a s e s ,  t h e  parameters  a r e  val id  u p  to px = 15. 
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T o b l e  3D.2. C o e f f i c i e n t s  for t h e  P o l y n o m i a l  F o r m  o f  t h e  D o s e  Buildup F o ~ t o r ~ ’ ~  

Maximum Average  
Deviat ion Devia t ion  6 6 

(70) (Yo) 
E (MeV) P o  6 Material  

Ordinary c o n c r e t e  1 5.1902(-1)d 1.6152( 0) 5.4702(-2) 1.8803(-3) -3.6, /LY = 4 1.8 
2 7.7342(-1) 9.1835(-1) 2.7260(-2) -3.9911(-4) 1.2, px = 2 0.4 

3 1.0530( 0) 6.3743(-1) 1.6185(-2) -3.8875(-4) -3.9, p = 2 1.2 
4 1.1506( 0) 4.9800(-1) 1.0547(-2) -2.9613(-4) -1.9, /LY = 8 0.8 
5 1.1806( 0) 4.1634(-1) 7.2376(-3) -2.2268(-4) 2.8, /LY = 2 1.3 
6 1.1846( 0) 3.6314(-1) 5.0942(-3) -1.6888(-4) 2.1, p = 8 0.9 
7 1.1784( 0) 3.2590(-1) 3.6051(-1) -1.2895(-4) -1.3, /LY = 4 0 .4  

Magnetite concre te  1 5.2780(-1) 1.1562( 0) 9.7936(-2) -1.4084(-3) 1.8, p = 20 0.8 
2 9.3721(-1) 8.0638(-1) 3.1686(-2) -4.9503(-4) 1.5, /LY = 8 0 .6  
3 9.5856(-1) 6.5113(-1) 1.3680(-2) -2.0725(-4) -1.6, p = 4 0 .6  

4 9.7216(-1) 5.3998(-1) 7.8749(-3) -1.0316(-4) -2.3, p = 10 1.7 
5 9.8690(-1) 4.5747(-1) 5.8668(-3) -6.0375(-5) 1.8, c ~ y  = 10 1.0 
6 1.0010( 0) 3.9452(-1) 5.2611(-3) -4.1859(-5) 3.0, p = 10 2 .3  
7 1.0237( 0) 3.4521(-1) 5.2272(-3) -3.4147(-5) 2.6, p = 8  1.4  

Ferrophosphorus 1 5.2446(-1) 1.1570( 0) 6.6197(-2) -2.6909(-4) 1.4, /.Lx = 10 0 .7  
concre te  2 9.0796(-1) 8.0470(-1) 2.4051(-2) -1.3747(-4) 1.4, PX = 20 0.5 

3 9.7879(-1) 6.3258(-1) 1.3122(-2) -2.8460(-5) -3.6, p = 20 1 . 1  
4 9.9224(-1) 5.2504(-1) 8.2727(-3) 8.2210(-5) -2.0, /LX = 12 1 .5  
5 9.9175(-1) 4.5156(-1) 5.5458(-3) 1.7478(-4) 2.6, p = 20 1.0 
6 9.8751(-1) 3.9831(-I) 3.7988(-3) 2.4954(-4) 3.3, p 20 2.4 
7 9.8244(-1) 3.5799(-1) 2.5837(-3) 3.1005(-4) 2.4, /”x = 6 1 .6  

Bary tes  concre te  1 1.4863( 0) 4.2184(-1) 1.3686(-1) -2.7616(-3) 2.1, [LY = 4 1 .0  
2 1.0139( 0) 6.7003(-1) 3.5826(-2) -5.2672(-4) 2.2, p = 8 1.1 

3 9.3467(-1) 5.9469(-1) 2.0106(-2) -2.9295(-4) -5.4, = 6  2.6 
4 9.1379(-1) 5.1277(-1) 1.3442(-2) -5.0691(-5) -3.8, /.LY = 14 2.2 

5 9.0721(-I) 4.4778(-1) 9.2573(-3) 1.8044(-4) 2.4, p = 8 1 .5  
6 9.0525(-1) 3.9750(-1) 6.2307(-3) 3.8250(-4) 5.3, p = 8 3.8 
7 9.0500(-1) 3.5806(-1) 3.8974(-3) 5.5449(-4) 4.0, /LX = 8  2.9 

aFrom ref. 64. 
bBased  on bui ldup fac tors  for-an “ef fec t ive”  a tomic  number (see text). 

‘The v a l u e s  of px given in  t h i s  column a r e  the v a l u e s  for which the  cor responding  errors  a r e  valid. 

dRead: 5.1902 x lo-’. e tc .  

n 
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Table 3D.3. Coefficients for Linear,  Quadratic, and Berger Farms of Dose Buildup Factors F i t ted  

over the Range 0 to 7 Mean Free  Paths from Point  Isotropic Sourcesa 

L i n e a r  Q u a d r a t i c  B e r g e r  

Maximum Maximum Maximum 
Mat e r i a l  E (MeV) A I  Erro r  b E r r o r  C D E r r o r  

A 2  
(70) (%) (%) 

Iron 

Tin 

Water  0.255 
0.5 
1 

2 
3 
4 
6 
8 

10 

Aluminum 0.5 
1 
2 
3 
4 
6 
8 

10 

0.5 
1 

2 
3 
4 
6 
8 

10 

0.5 
1 

2 
3 
4 
6 
8 

10 

T u n g s t e n  0.5 
1 
2 
3 
4 
6 
8 

10 

8.6524 
4.6800 
1.9953 
1.0301 
0.7397 
0.5884 
0.432 1 
0.3406 
0.2877 

2.6461 
1.6089 
0.9686 
0.7197 
0.5663 

0.4334 
0.3476 
0.2847 

1.4283 
1.2373 
0.8556 
0.6691 
0.5403 
0.4297 
0.3391 
0.2681 

0.5153 
0.7199 
0.6731 
0.5837 
0.5146 
0.4153 
0.3317 
0.2550 

0.1903 
0.3817 
0.4376 
0.4171 
0.4054 
0.3363 
0.2624 
0.2073 

F3.1 
F2.3 
40 
10 
3 
1 

3 
4 
4 

F1.5 
30 
13 
5 
3 

2 
1 

2 

25 
20 
12 
9 
7 
8 
8 
8 

3 
6 

8 
11 

1 2  
17 
17 
16 

8 
5 
2 
5 

12 
17 
16 
14 

-0.2525 1.4984 
0.6684 0.6750 
1.0053 0.1666 
0.8242 0.0346 
0.6962 0.0073 
0.5801 0.0014 
0.4616 -0.0050 
0.3782 -0.0063 
0.3251 -0.0063 

1.0688 0.2654 
0.9316 0.1140 
0.7437 0.0378 
0.6355 0.0142 
0.5284 0.0064 
0.4142 0.0032 
0.3346 0.0022 
0.2715 0.0022 

0.8642 0.0949 
0.8026 0.0731 
0.6526 0.0342 
0.5338 0.0228 
0.4366 0.0175 
0.3237 0.0178 
0.2473 0.0154 
0.1785 0.0151 

0.5479 -0.0055 
0.6153 0.0176 
0.5455 0.0215 
0.4284 0.0261 
0.3420 0.0290 
0.2082 0.0348 
0.1371 0.0327 
0.0945 0.0270 

0.2692 -0.0133 
0.4269 -0.0076 
0.4164 0.0036 
0.3515 0.0110 
0.2540 0.0255 
0.1435 0.0324 
0.0957 0.0281 
0.0748 0.0223 

30 
8 
2 
2 
1 
1 

1 
1 
1 

2 
2 
2 
1 
1 

1 
1 

1 

1 
1 

5 
1 

1 
1 
1 
1 

2 
1 

1 
1 

1 
2 
2 
2 

2 
2 
1 
1 
1 
2 
2 
2 

1.7506 0.2609 
1.3245 0.2078 
1.0622 0.1052 
0.8093 0.0408 
0.6876 0.0125 
0.5800 0.0024 
0.4655 -0.0126 
0.3860 -0.0214 
0.3342 -0.0257 

1.2435 0.1250 
0.9589 0.0864 
0.7267 0.0486 
0.6294 0.0227 
0.5253 0.0127 
0.4177 0.0061 
0.3371 0.0050 
0.2752 0.0055 

0.9081 0.0752 
0.8214 0.0684 
0.7020 0.0319 
0.5323 0.0384 
0.4366 0.0358 
0.3271 0.0457 
0.2563 0.0464 
0.1876 0.0592 

0.5608 -0.0146 
0.62 19 0.0244 
0.5498 0.0338 
0.4379 0.0479 
0.3583 0.0601 
0.2369 0.0925 
0.1692 0.1103 
0.1232 0,1190 

0.2938 -0.0751 
0.4425 -0.0255 
0.4172 0.0080 
0.3501 0.0295 
0.2710 0.0666 
0.1771 0.1049 
0.1245 0.1223 
0.0974 0.1238 

10 
5 
3 
1 
1 
1 
1 
1 
1 

3 
3 
2 
1 
1 

1 
1 

1 

2 
2 
3 
1 

1 

1 
1 
1 

1 

1 

1 
1 

1 
1 

1 
1 

2 
1 
1 
1 

1 
1 

1 
1 
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Table 3D.3 (continued) 

L i n e a r  Quadra t ic  Berger  

Maximum Maximum Maximum 
Material E (MeV) A I  Error b Error C D Error 

A 2  
(70) (%) (%) 

L e a d  

Uranium 

Ordinary concre te  

Ferrophosphorous 
concrete 

8 
Magnetite concrete '  

0.5 
1 

2 
3 
4 
5.1 
6 
8 

10 

0 .5  
1 

2 
3 

4 
6 

8 
10 

0 . 5  
1 

2 
3 
4 

6 
8 

10 

0.5 
1 

2 
3 

4 
6 

8 
10 

0.5 
1 
2 
3 
4 
6 

8 
10 

0.1549 
0.2990 
0.3796 
0.3810 
0.3523 
0.3219 
0.3034 
0.2419 
0.1933 

0.1054 
0.2264 

0.3023 
0.3169 

0.3010 
0.2571 
0.2081 
0.1621 

3.7443 
1.9057 
1.0226 

0.7303 
0.5736 

0.4329 
0.3376 

0.2923 

1,9407 
1.4657 

0.9264 

0.6996 
0.5611 
0.4399 
0.3493 
0.2827 

2.3150 
1.6021 

0.9757 
0.7110 

0.5634 
0.4410 

0.3391 
0.2840 

8 
6 
1 

5 
10 
13 
15 

15 
13 

7 
7 

3 
4 

7 
12 
1 2  
11 

30 
40 
12 

7 
5 

6 
6 

5 

F1.5 
30 

10 
4 
6 

2 
2 
3 

F1.5 
33 
10 
5 
4 
2 
2 
2 

0.2273 -0.0122 
0.3613 -0.0105 
0.3787 0.0001 
0.3164 0.0109 
0.2389 0.0191 
0.1747 0.0248 
0.1346 0.0284 
0.0894 0.0257 
0.0642 0.0217 

0.1637 -0.0098 
0.2990 -0.0122 

0.3250 -0.0038 
0.2760 0.0069 

0.2199 0.0136 
0.1314 0.0212 
0.0885 0.0201 
0.0638 0.0165 

1.3563 0.4018 

1.0980 0.1359 
0.8238 0.0335 

0.6189 0.0187 
0.6106 -0.0062 

0.4667 -0.0057 
0.3794 -0.0070 

0.3344 -0.0071 

0.9330 0.1696 
0.8542 0.1029 

0.7481 0.0300 
0.6198 0.0134 
0.4980 0.0106 

0.4119 0.0047 
0.3243 0.0042 
0.2574 0.0043 

0.9510 0.2295 
0.8847 0.1207 
0.7636 0.0357 
0.6163 0.0159 
0.5177 0.0077 
0.4200 0.0035 

0.3127 0.0044 
0.2670 0.0029 

3 
2 
1 

1 
1 
1 
2 
3 
3 

2 
2 
1 
1 
1 
1 
1 
1 

7 
7 
2 
1 
3 

4 
3 

3 

8 
3 
2 
1 

2 
2 
2 
1 

3 
3 

2 
2 
1 
2 
1 
1 

0.2526 -0.0848 
0.3779 -0.0403 
0.3862 0.0032 
0.3267 0.0253 
0.2530 0.0547 
0.1936 0.0839 
0.1622 0.1027 

0.1220 0.1112 
0.0939 0.1167 

0.1825 -0.0951 
0.3204 -0.0599 

0.3321 -0.0162 
0.2814 0.0196 

0.2283 0.0458 
0.1476 0.0916 
0.1081 0.1076 
0.0798 0.1163 

1.4489 0.1586 
1.0448 0.1014 

0.8062 0.0403 
0.6267 0.0254 
0.6451 -0.0207 

0.5086 -0.0286 
0.4085 -0.0334 

0.3584 -0.0356 

0.9059 0.1283 
0.8467 0.0921 

0.7327 0.0397 
0.6331 0.0164 
0.4879 0.0237 

0.4346 0.0011 
0.3390 0.0043 
0.2563 0.0165 

1.1049 0.1221 
0.9006 0.0965 

0.7770 0.0380 
0.6321 0.0194 

0.5241 0.0119 
0.4401 -0.0004 

0.3225 0.0080 
0.2682 0.0096 

2 
1 

1 
1 
1 

1 
1 

2 
2 

2 
2 
1 
1 

1 
1 
1 
1 

10 

7 
2 
1 
3 

3 
2 
2 

8 
5 

2 
1 

2 
2 
2 
1 

4 
4 

1 
1 

2 
2 

1 
1 
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T a b l e  3D.3 (continued) 

Linear Quadratic Berger 

Maximum Maximum Maximum 
Material E (MeV) A ,  Error b Error C D Error 

A 2  
(”roo) (%) (%) 

Barytes concrete‘ 0.5 
1 

2 
3 
4 
6 
8 

10 

1.4414 
1.2066 
0.8740 
0.6556 
0.5634 
0.4571 
0.3519 
0.2684 

23 
2 1  
10 

6 
9 

10 
5 
7 

0.8769 
0.7599 
0.6886 
0.5345 
0.4682 
0.3344 
0.2836 
0.1894 

0.0950 
0.0752 
0.0312 
0.0204 
0.0160 
0.0207 
0.0115 
0.0133 

0.9313 
0.7764 
0.7006 
0.5508 
0.4413 
0.3342 
0.2901 
0.1990 

0.0724 
0.0737 
0.0368 
0.0289 
0.0418 
0.0525 
0.0321 
0.0495 

~~ 

aFrom ref. 67. 
bF3.1 means “factor of 3.1,” etc. 
CBased on buildup factors for an “effective” atomic number (see text). 

T a b l e  3D.4. Coeff ic ients for Linear,  Quadratic, and Berger Forms of Dose Buildup Factors F i t ted  

over the Range 0 to 20 Mean Free  Paths from Poin t  Isotropic Sourcesa 

Linear Quadratic Berger 

Maximum Maximum Maximum 
Material E (MeV) A I  Error b Error C D Error 

(%) (70) (70) 

Water 

Aluminum 

Iron 

0.255 
0.5 
1 
2 
3 
4 
6 
8 

10 

0.5 
1 
2 

3 
4 
6 
8 

10 

0.5 
1 

2 
3 
4 
6 
8 

10 

36.1015 
13.0926 
3.4788 
1.2549 
0.7863 
0.5951 
0.4030 
0.3085 
0.2584 

5.7374 
2.5385 
1.1928 
0.8061 
0.6075 
0.4626 
0.3697 
0.3087 

2.3773 
1.8643 
1.1194 
0.8446 
0.6942 
0.61 34 
0.5245 
0.4759 

F12 
F5.6 
F2 
25 
6 
1 

5 
7 
7 

F3  
F1.9 
30 
12 
6 
6 
5 
5 

F1.9 
F1.6 
33 
25 
25 
34 
40 
50 

-12.9947 3.0515 
-0.9744 0.8743 

1.1152 0.1469 
0.9173 0.0210 
0.7218 0.0040 
0.5907 0.0003 
0.4471 -0.0027 
0.3561 -0.0038 
0.3002 -0.0026 

0.6696 0.3150 
1.1185 0.0883 
0.8751 0.0197 
0.6812 0.0078 
0.5503 0.0036 
0.4252 0.0023 
0.3395 0.0019 
0.2750 0.0021 

0.9019 0.0917 
0.9212 0.0586 
0.7423 0.0234 
0.5840 0.0162 
0.4605 0.0145 
0.3201 0.0182 
0.2207 0.0189 
0.1143 0.0225 

F W  
F 3  

6 

6 
2 
1 

2 
2 
3 

20 
10 
8 

3 
2 
2 
1 
1 

3 
7 
6 
4 
2 
1 
3 
6 

2.5048 0.1623 
1.8035 0.1224 
1.2282 0.0649 
0.8594 0.0240 
0.7004 0.0074 
0.5826 0.0014 
0.4853 -0.0082 
0.3741 -0.0124 
0.3206 -0.0139 

1.4412 0.0850 
1.0831 0.0535 
0.7869 0.0266 
0.6504 0.0137 
0.5343 0.0082 
0.4182 0.0063 
0.3366 0.0058 
0.2738 0.0074 

0.9814 0.0548 
0.8932 0.0460 
0.7173 0.0277 
0.5571 0.0261 
0.4518 0.0268 
0.3381 0.0368 
0.2603 0.0428 
0.1902 0.0553 

30 
25 
11 
5 
2 
1 
1 
2 
2 

1 2  
9 
6 
3 
2 

1 
1 

1 

7 
7 

4 
4 
3 
3 
2 
1 
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n 

0 
P 
8 
P 

P 

fl 

Table 3D.4 (continued) 

L i n e a r  Q u a d r a t i c  B e r g e r  

Maximum 
Mate r i a l  E (MeV) A I  Erro r  b 

( 7 0 )  

T u n g s t e n  

L e a d  

T i n  0.5 
1 
2 
3 
4 
6 

8 

10 

0.5 
1 
2 
3 
4 
6 
8 

10 

0.5 
1 

2 
3 
4 
5.1 
6 
8 

10 

Uran ium 0.5 
1 

2 
3 
4 
6 
8 

10 

Ord ina ry  c o n c r e t e '  0.5 
1 
7 
I 

3 
4 
6 
8 

10 

0.5090 
0.8495 
0.8521 
0.8509 
0.8643 
1.0786 
1.1907 
1.1075 

0,1550 
0.3382 
0.4671 
0.5919 
0.8102 
1.2616 
1.3753 
1.2730 

0.1043 
0.2549 
0.3947 
0.5123 
0.6378 
0.8560 
1.1247 
1.4165 
1.2370 

0.081'2 
0.1914 

0.2838 
0.4081 

0.4991 
0.8088 
0.9323 
0.9203 

5.0124 
2.9917 
1.2334 
0.7857 
0.5942 
0.4145 
0.3-700 

0.2737 

4 
18 
25 
40 
F1.58 
F 2 . 2  

F2.8 
F3.0 

13 
9 
8 

30 
F1.8 
F3  
F3.5 
F3.8 

15 
11 
3 

30 
F1.6 
F2.1 
F2.8 
F4 
F4 

11 
11 

5 
20 
43 
F2.3 
F2.9 
F3.3 

F2.3 
F2 
25 
1 2  
4 
5 
4 

5 

0.5150 -0.0005 
0.6666 0.0114 
0.5826 0.0168 
0.4254 0.0264 
0.2845 0.0360 

-0.1374 0.0756 
-0.4693 0.1032 
-0.6523 0.1094 

0.2206 -0.0054 
0.4149 -0.0048 
0.4072 0.0037 
0.3255 0.0165 
0.0995 0.0442 

-0.5462 0.1124 
-0.9399 0.1439 
-0.9502 0.1382 

0.1791 -0.0047 
0.3133 -0.0036 

0.3695 0.0015 
0.2990 0.0133 
0.1449 0.0306 

-0.1480 0.0624 
-0.5070 0.1014 
-1.1408 0.1589 
-1.0279 0.1408 

0.1262 -0.0037 
0.2556 -0.0053 

0.3185 -0.0022 
0.2614 0.0091 
0.1621 0.0210 

-0.2492 0.0658 
-0.5357 0.0912 
-0.6560 0.0980 

0.8341 0.5016 
1.1821 0.1125 
0.9344 0.0186 
0.7141 0.0044 
0.5662 0.0017 
0.4440 -0.0018 
0.3445 -0.0015 
0.3015 -0.0017 

Maximum Maximum 

Er ro r  

(70) 

C D Er ro r  

(X) 

3 
3 
3 
1 
5 

40 
F 3  

F12 

5 
2 
3 
2 

15 
F4 

F m  

F m  

5 
5 
2 
2 

10 
40 
F4 

F m  
F m  

5 
5 

2 
7 - 
6 

F2 
F 5  

F m  

10 
10 
7 
6 
5 
5 
5 
5 

0.5457 -0.0063 
0.6378 0.0180 
0.5678 0.0254 
0.4533 0.0388 
0.3700 0.0518 
0.2401 0.0891 
0.1669 0.1145 
0.1190 0.1278 

0.2692 -0.0477 
0.4279 -0.0150 
0.4163 0.0070 
0.3484 0.0324 
0.2727 0.0653 
0.1704 0.1160 
0.1161 0.1405 
0.0882 0.1510 

0.2243 -0.0500 
0.3530 -0.0711 
0.3791 0.0021 
0.3244 0.0279 
0.2526 0.0557 
0.1904 0.0883 
0.1554 0.1143 
0.1075 0.1440 
0.0824 0.1513 

0.1635 -0.0606 
0.2991 -0.0385 

0.3240 -0.0084 
0.2781 0.0234 

0.2273 0.0475 
0.1426 0.1011 
0.1004 0.1274 
0.0721 0.1442 

1.5177 0.1413 
1.2208 0.0562 
0.8579 0.0231 
0.6589 0.0115 
0.6056 -0.0018 
0.4769 -0.0093 
0.3789 -0.0113 
0.3318 -0.0128 

3 
3 
3 
3 
3 
7 - 
1 
5 

5 
2 
4 
2 

1 
2 
6 
7 

5 
4 
1 
1 
1 

2 
4 

1 2  
1 2  

5 
5 

2 
1 

1 
2 

5 
7 

12 
11 
5 
5 
4 
4 
4 
4 
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Table 30.4 (continued) 

L i n e a r  Quadra t ic  Berger  

Maximum Maxim um Maximum 
Mater ia l  E (MeV) A I  Error b Error  C D Error  A 2  

(%) (%) (%) 

Ferropho sphorous 

concrete‘  

Magnetite concrete‘  

0.5 
1 
2 
3 
4 
6 
8 
0 

0.5 
1 
2 
3 
4 
6 

8 
10 

Bary tes  concrete‘  0.5 
1 

2 
3 
4 
6 
8 

10 

3.4067 
2.1096 
1.1583’ 
0.8138 
0.6702 
0.5469 
0.4477 
0.3972 

4.2793 
2.3058 
1.1752 
0.8098 
0.6263 
0.4781 
0.3805 
0.3399 

2.2489 
1.8761 
1.1122 
0.8068 
0.6873 
0.6277 
0.5574 
0.4943 

F2.2 
F1.7 
30 
16 
16 
18 
19 
25 

F2.5 
F1.7 
25 
15 
10 

7 

9 
12 

F1.8 
F1.7 
30 
24 
2 1  
30 
40 
50 

1.1051 0.1431 
1.1170 0.0617 
0.7992 0.0223 
0.6488 0.0103 
0.4923 0.0111 
0.3622 0.0115 
0.2692 0.0111 
0.1971 0.0124 

1.4544 0.1756 
1.2562 0.0652 
0.8756 0.0186 
0.6616 0.0092 
0.5280 0.0061 
0.4257 0.0033 
0.3195 0.0038 
0.2428 0.0060 

1.1064 0.0710 
1.0022 0.0543 
0.7591 0.0219 
0.6047 0.0126 
0.4913 0.0122 
0.3420 0.0178 
0.1882 0.0229 
0.0936 0.0249 

15 
15 
4 
2 
2 
5 
5 
5 

23 
20 

5 
3 
2 
3 - 
2 
3 

11 
14 
4 
6 
4 
2 

10 
10 

1.1098 0.0704 
0.9892 0.0481 
0.7703 0.0256 
0.6373 0.0152 
0.4966 0.0186 
0.4118 0.0167 
0.3207 0.0196 
0.2456 0.0287 

1.3246 0.0736 
1.0651 0.0492 
0.8208 0.0227 
0.6445 0.0143 
0.5265 0.0108 
0.4312 0.0062 
0.3204 0.0106 
0.2623 0.0156 

1.0183 0.0496 
0.8555 0.0495 
0.7291 0.0265 
0.5673 0.0222 
0.4689 0.0242 
0.3542 0.0355 
0.2806 0.0409 
0.1949 0.0555 

15 
10 

3 
2 

2 
3 
4 
3 

18 
12 
5 
2 
1 
2 
3 
I 

2 

10 
12 
4 
4 
4 
4 

3 
2 

aFrom ref. 61. 
bF12 means  “ fac tor  of 12,” e tc .  
‘Based on bui ldup fac tors  for a n  “ef fec t ive”  atomic number (see text). 
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n 
Table 3D.5. Coefficients for Berger Form of Dose Buildup Factors Fitted Over 

the Range 0 to 20 Mean Free Paths from Point Isotropic Source&b 

Maximum 

(%I 
Material E (MeV) C D Error 

Ordinary concreteC 

Magnetite concrete 

Barytes concrete 

AU 

Ordinary concreteC 0.5 
1 .o 
2.0 
3.0 
4.0 
6.0 
8.0 

10.0 

0.5 
1.0 
2.0 
3.0 
4.0 
6.0 
8.0 

10.0 

0.5 
1.0 
2.0 
3.0 
4.0 
6.0 
8.0 

10.0 

0.5 
1.0 
2.0 
3.0 
4.0 
6.0 
8.0 

10.0 

0.5 
1.0 
2.0 
3.0 
4.0 
6.0 
8.0 

10.0 

0.5 
1.0 
2.0 
3.0 
4.0 
6.0 
8.0 

10.0 

1.3029 
1.0914 
0.8126 
0.6731 
0.5953 
0.4915 
0.4164 
0.3585 

1.3110 
1.0221 
0.7744 
0.6525 
0.5672 
0.4718 
0.4203 
0.3716 

1.0971 
0.9281 
0.7318 
0.6154 
0.5308 
0.4345 
0.3752 
0.3245 

0.7002 
0.7237 
0.6270 
0.5367 
0.4645 
0.3727 
0.3172 
0.2667 

1.1571 
0.8363 
0.6974 
0.6081 
0.5 146 
0.4635 
0.4235 

1.4474 
1.0876 
0.8077 
0.6758 
0.5875 
0.4886 
0.4334 
0.3883 

1.6001 

0.086 10 
0.54566 
0.01980 
0.00942 
0.00299 

-0.00159 
-0.00172 
-0.00005 

0.08073 
0.05160 
0.02456 
0.01258 
0.00753 
0.00198 
0.00096 
0.00127 

0.06458 
0.04768 
0.02620 
0.01836 
0.015 13 
0.01 118 
0.01199 
0.01624 

0.01624 
0.03007 
0.02373 
0.02158 
0.02122 
0.02233 
0.02588 
0.02878 

0.10094 
0.05749 
0.02430 
0.0 16 17 
0.00324 

-0.00316 
-0.00362 
-0.00350 

0.08932 
0.05482 
0.02503 
0.01239 
0.0065 1 
0.00091 
0.00009 

-0.00224 

18 
15 
9 
4 
2 
3 
6 
9 

12 
9 
5 
3 
2 
1 
1 
1 

8 
8 
5 
4 
3 
2 
2 
2 

1 
4 
4 
4 
3 
3 
2 
2 

18 
11 

5 
3 
1 
1 
1 
1 

14 
10 
5 
3 
2 
1 
1 
1 

Sand 

n 
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Table 3D5 (continued) 

Maximum 

(%) 
Material E (MeV) C D Error 

~~ 

Wood 

LiH 

0.5 
1.0 
2.0 
3.0 
4.0 
6.0 
8.0 

10.0 

0.5 
1.0 
2.0 
3.0 
4.0 
6.0 
8.0 

10.0 

1.6187 
1.1676 
0.8457 
0.7051 
0.6149 
0.5176 
0.4727 
0.4328 

2.0198 
1.2652 
0.8391 
0.6607 
0.5778 
0.4671 
0.4047 
0.3676 

0.10280 
0.05802 
0.02392 
0.00913 
0.00253 

-0.00342 
-0.00438 
-0.00390 

0.13997 
0.07091 
0.02272 
0.00546 

-0.00157 
-0.0 10 17 
-0.01213 
-0.01135 

19 
11 
5 
3 
1 
1 
1 
1 

34 
16 
6 
2 
1 
2 
3 
3 

“From ref. 215. 
bBased on fits to buildup factors calculated specifically for the material (see 

text). 
CThe first set of coefficients for ordinary concrete is based on buildup 

factors reported by Chilton (ref. 57) for ranges up to 50 mean free paths. The 
second set of coefficients for ordinary concrete is based on buildup factors 
reported by Clark and Trubey (ref. 54) for ranges up to 20 mean free paths. , 



Appendix 3 E. Geometric Transformations 
for Kernels 

Results from calculations and experiments for one 
geometry may be transformed to kernels for other 
geometries. The purpose is usually to compare results or 
apply basic data, such as for a point source, to 
particular design situations. Blizard developed many of 
these transformations, and while they were more 
frequently employed in the pre-computer era of shield- 
ing, they are still useful in many situations. The basic 
assumption is that the medium is isotropic, homoge- 
neous, and infinite, so that the kernels are dependent 
only on the distance to the source. These conditions are 
never fully met, but in many practical cases the 
transformation results are valid to a good approxi- 
mation. The kernels are unspecified; they may be dose 
rate, flux density, or similar quantities. A few of the 
most important transformations are given here, with 
more complete expositions available in articles by 

Point to Infinite Plane. - The dose from an infinite 
plane, D(z,m), is obtained by integrating the point- 
source kernel, K(R) ,  over the entire plane. That is, 

Blizard.92,93,208 

D(Z,W) = ,om S K ( R )  2n p dp 

= 2nS $"'K(R) z R d R  , (El) 

where 

S = source strength (particles per unit time per 

z = distance to plane source, 

unit area), 

2n p d p  = differential area on the plane, all points of 
which are at the same distance R from the 
detector point, 

R = @ - T 7 .  
Point to Disk. - The point-to-disk transformation is 

similar to the point-to-infinite-plane transformation but 
with an upper limit of integration which corresponds to 

the radius of the disk. The disk kernel is 

D(z,u) = 277s , K(r) R d R  , (E2) 

where u is the radius of the disk. 

Eq. E2 can be rewritten as 
Infinite Plane to Disk. -The disk kernel as given by 

D ( z p )  = 2nS $ K ( R )  R d R  

The two terms are infinite plane kernels as defined by 
Eq. E l  and the expression for the disk kernel can be 
rewritten as an infinite-plane-to-disk transformation: 

D(z,u) = D(Z,W) - D ( d 2  t 2 ,  -) 

Disk-to-Infinite Plane (Hurwitz Transformation). - It 
was observed by Hunvitz and recorded by Blizard that 
data for a disk source, such as that from the ORNL Lid 
Tank Shielding Facility, could be transformed to data 
for an infinite plane source by a summation process: 

D(z,m) =2ns [, K(R)  dR 

J.Jz-2 ma K ( R )  dR 

JT" K ( R )  d R  t ...I JJm 
m 

= r: D(Z',4 > (E41 
u= 0 

where D(z',u) is the dose due to a disk of radius u at a 
distance z' = d w  Thus the dose for an infinite 
plane could be obtained simply by adding the measured 
results at points z'.  For materials such as water, the 
series converges in only a few terms, so a relatively 
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small range of distances where data can be obtained is 
generally adequate. Nevertheless, it is more satisfactory 
to  estimate the remainder of the series. Blizardg2 has 
done this by assuming that terms up to v' can be 
obtained and that the data can be extrapolated as an 
exponential function proportional to  e - ~ z ' :  

V I -  1 

D(Z,W) D(z',a) 
v=o 

where 

Disk to Point. - In a manner similar to the 
transformation from a disk to  an infinite plane, the data 
for a disk source may be transformed to that for a point 
source, but derivatives must be evaluated. That is, 

+( 2 F + + ) B ( d m ) ,  w (E6) 

where 

i a  B(z) = - - -D(z,a) 
2nsz 3.2 

Infinite Plane to Spherical Surface. - The dose for a 
spherical surface source of radius r is obtained by 
integrating the point kernel over the entire surface of 
the sphere. The spherical surface source kernel is given 
by 

Dss(ro,r) = 2nS K(R)  rz  sin6 d6 
8 = 0  

= 2nSL J ro ' r  K ( R )  R dR , 057) ro r , - r  

where ro is the distance from the detector to the center 
of the sphere. This result can be interpreted as the 
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difference between the doses due to infinite planes 
located at the two points where the sphere intersects 
the axis containing the detector point and the center of 
the sphere. The infinite plane to  spherical source 
transformation is given by 

This formulation presumes that the material within the 
sphere has the same attenuating properties as the 
shielding material. 

Spherical Volume Source. - Consider a spherical 
volume source of radius r whose intensity s(r') depends 
only on the distance from the center of the sphere r'. 
An equivalent surface source for a spherical shell of 
thickness dr' about r' is given by s(r') dr'. The detector 
response to this shell source would be the spherical 
surface source kernel Dss(ro ,r')/S multiplied by the 
source s(r') dr' ,  and the detector response from all such 
differential shell sources within the spherical volume is 

where Dss(ro,r') is given by Eqs. E7 and E8. Equation 
E9, which is a transformation from a spherical surface 
to a spherical volume, can be rewritten as a transforma- 
tion from an infinite plane to a spherical volume by 
substituting Eq. E8 into Eq. E9, which gives 

But in most cases, 

D(ro - r ,w)  2+D(ro + r,W) , 

in which case 

The restriction that the material within the sphere have 
the same attenuating properties as the shielding material 
also applies to these results. 
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Appendix 3F. Neutron Kernels from 
Monte Carlo Transport Calculations 

This appendix presents kernels (also called attenua- 
tion or transmission factors) obtained from Monte 
Carlo calculations of the penetration of neutrons 
through concrete and several other materials. Figures 
3F.1 through 3F.10 show the data of Clark el for 
monoenergetic beams of neutrons normally incident on 
ordinary concrete, both on a slab and on a semi-infinite 
medium. The density of the concrete was taken to be 
2.43 g/cm3, and its composition, other than its water 
content, was assumed to be that given for ordinary 
concrete 01 in ref. 97. The results are given as tissue 
kerma* as a function of concrete thickness. 

Figures 3F.11 through 3F.15 present plots of neutron 
dose transmission factors calculated by Allen and 

ORNL-0% 66-644lR3 

CONCRETE BETWEEN SOURCE AND DETECTOR (cm) 

-60 BO 400 420 440 460 480 

I 1 I I I I 

I I h. , .. 
I \ '  I \I' 

I I \-\- I x'. 
I \'? I \ \  

I I I I I - SLAB RESULTS I \\* 
- - - 
- HALF-SPACE RESULTS j - -- . --. - I I \  

I 
I I I I I \' 

0 20 40 60 80 400 420 
CONCRETE BETWEEN SOURCE AND DETECTOR (cm) 

Fig. 3F.1. Dose in Ordinary Concrete Due to Normally 
Incident 14-MeV Neutrons. (From ref. 96.) 

Futterer' O 0  for monoenergetic neutrons incident at 
various angles on polyethylene. When the thickness is 
adjusted according to the key included at the top of 
each figure, these curves apply also to water, to 
concrete, and to Nevada Test Site soil, both dry and 
water-saturated. The doses calculated by Allen and 
Futterer are multicollision doses.* 

The use of curves of this type is explained in Section 
3.8.4. 

*See the discussions of kerma, first-collision dose, and 
multicollision dose in Chapter 2 of this Handbook. 
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Fig. 3F.2. Dose in Ordinary Concrete Due to Normally 
Incident 12-MeV Neutrons. (From ref. 96.) 
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Incident 10-MeV Neutrons. (From ref. 96.) 

ORNL-DWG 6 6 - 6 4 4 4 R 3  

CONCRETE BETWEEN SOURCE AND DETECTOR (Cm) 

60 80 400 420 440 460 480 _7 

W 
3 

+ 3 td’0 

z 
0 
IT 
I- 

z 
3 46” Z - SLAB RESULTS 

I . -- HALF-SPACE RESULTS I , I 

0 20 40 60 80 400 420 
CONCRETE BETWEEN SOURCE AND DETECTOR (cm l  

n 

Fig. 3F.4. Dose in Ordinary Concrete Due to Normally Fig. 3F.6. Dose in Ordinary Concrete Due to Normally 
Incident 8-MeV Neutrons. (From ref. 96.) Incident 4-MeV Neutrons. (From ref. 96.) 



129 

n 
ORNL-DWG 6 6 - 6 4 4 7 R 4  ORNL-DWG 6 6 - 6 4 4 9 R 3  

40-6 

40.~ 

40-" CONCRETE BETWEEN SOURCE AND DETECTOR (cm) 
80 400 420 440 460 480 200 

40-6 40-8 

N . F  
c 

N g  \ 4 0 - ~  5 

2 40-8 40-'0 2 

: P 
25 ,o-" f 

- (o-'o 4 6 ' 2  2 

c E 

9 
a 3 m 
- e - 
al 

E E e 8 

a 1 0 ' ~  
2 H n a 
W W 
Y Y 

W W 3 

I- I- 
z z 
0 0 n n 
I- 

W W 
z z 

46 '3  5, 3 46" 

HALF-SPACE RESULTS 

4 6 ' 2  d4 
0 20 40 60 80 400 420 
CONCRETE BETWEEN SOURCE AND DETECTOR (cm l  

\ *  I 
I \  

\'*I 1 I I \ \ I  
I 

I I I 

a 
I n 
Y 4 d ' O  
W 3 v) 

c II 
I I \ I I 4, 

z ,o-" 
0 a 
t- 
3 W 

z 
d2 

\\ I 
0 20 40 60 80 400 120 

CONCRETE BETWEEN SOURCE AND DETECTOR (cm) 
Fig. 3F.7. Dose in Ordinary Concrete Due to Normally 

Incident 3-MeV Neutrons. (From ref. 96,) Fig. 3F.9. Dose in Ordinary Concrete Due to Normally 
Incident 1.3-MeV Neutrons. (From ref. 96.) 

P UtiNL-DWG 6 6 - 6 4 4 8 R 4  

CONCRETE BETWEEN SOURCE AND DETECTOR ( c m l  
_,EO 400 420 440 460 480 200 -p. 

ORNL-DWG 6 6 - 6 4 5 0 R 4  

40-" 40 - 
I SLAB RESULTS 1 -  

. I  . '. I , 1 -- HALF-SPACE RESULTS 3 
4 6 ' 2  4 6 '  

4 6 "  

40-" 

4 6 ' 2  

d3 

4d7 
c 
xg 

4 0 - ~  
NT c 

E N  E 

e e 
3 % 40-8 
z z 5 s  
P P 

P 

c \ \ c 
+ 

E E 

e - .  40-9 

r .=, 

do 

c 
NE 

40-'3 2 

5 

\ K 

3 0 

E 

e 
ro-'4 $ 

I=1 

I \ .. I , I 

I I I I '\\I 
\ i  

a 
E 
Y to+ 

a a B Z  
W W 
Y Y 

W 3 W 

In 3 v) 

I- I- 
?? I? 

a 
E 

ro-'5 w 
Y 

W 3 v) 

I- 
II 

W 3 
v) v) 

F 
z z 

0 
I- 

a 
3 

I- 

W 
3 

z W z 

O n  o 
I 

I I I I 3 
I W 
I I \ \  I I z 

I\ \ I I \ \  
I I I \ \  I \ HALF-SPACE RESULTS \ 1 . -- 

( , 
0 20 40 60 80 400 420 0 20 40 60 80 400 420 
CONCRETE BETWEEN SOURCE AND DETECTOR (cm) CONCRETE BETWEEN SOURCE AND DETECTOR (cm) 

Fig. 3F.8. Dose in Ordinary Concrete Due to  Normally Fig. 3F.10. Dose in Ordinary Concrete Due to Normally 
Incident 2-MeV Neutrons. (From ref. 96.) Incident 0.7-MeV Neutrons. (From ref. 96.) 



130 

1 6 3  

ORNL-DWG 66-8724R3 
2 I I I 1 

1 in.OF POLYETHYLENE = 4.24 in. OF WATER 

0 704 POLYETHYLENE OR WATER 1 
I I I I I \  \ 

400 

5 

2 

w 

0 
: : 5  

W 
2 
a 
d 2  n 

40-2 

5 

= 4 80 in OF CONCRETE 
= 2 38 in OF NEVADA TEST 

SITE SOIL (100% 

= 3 25 in OF NEVADA TEST 
SITE SOIL (AREA 71 

I I I 
0'. CONCRETE OR NTS 
450. CONCRETE OR NTS 

704 CONCRETE OR NTS 
0 09 POLYETHYLENE OR WATER 
0 454 POLYETHYLENE OR WATER 

I I 1 I 1 

0 2 4 6 8 40 12 
THICKNESS OF POLYETHYLENE (in.) 

5 

Fig. 3F.11. Penetration of 5-MeV Neutrons Incident on 
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Appendix 3G. Neutron Kernels from 
Discrete Ordinates Transport Calculations 

This appendix presents kernels (also called atten- 
uation or transmission factors) obtained from dis- 
crete ordinates calculations of the penetration of 
neutrons through concrete. These kernels were com- 
puted by Roussin and Schmidtg9 with the AMSN code 
for several source energies and slab thicknesses and for 
both a normally incident source and a plane isotropic 
source. The results are given in terms of tissue dose 
equivalent.* Figures 3G.1 and 3G.2 give the neutron 
tissue dose equivalent as a function of neutron energy 
for several concrete slab thicknesses for normally 
incident and isotropically incident sources respectively. 
Figures 3G.3 and 3G.4 give the same data as a function 
of slab thickness for specific source energy bands, also 
for normally incident and isotropically incident sources 
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respectively. Figure 3G.5 shows the relative importance 
of the neutron dose and the secondary gamma-ray dose 
produced by neutrons as a function of energy for 
various slab thicknesses. These ratios, which are for a 
normally incident source, can be applied to the data 
given in Figs. 3G.1 and 3G.2 to calculate corresponding 
secondary gamma-ray and/or total doses. Comparisons 
of the total dose (secondary gama- ray  dose plus 
neutron dose) for two source energies are shown in Fig. 
3G.6. 

The use of curves of this type is explained in Section 
3.8.4. 

*See the discussion of dose equivalents in Chapter 2 of this 
Handbook. 
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Fig. 3G.3. Neutron Tissue Dose Equivalent as a Function of 
Concrete Slab Thickness for Normally Incident Neutrons of 
Varioushergies. (From ref. 99.) 
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Fig. 3G.4. Neutron Tissue Dose Equivalent as a Function of 
Concrete Slab Thickness for Plane Isotropic Neutron Sources of 
Various Energies. (From ref. 99.) 
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Appendix 3H. Graphs and Formulas of Exponential 
and Exponential Integral Functions 

Several  exponent ia l  funct ions tha t  a re  extremely 
useful  i n  sh ie ld ing  ca lcu la t ions  a r e  presented i n  
t h i s  appendix. They  include t h e  exponent ia l  func- 
tion e-x and t h e  exponent ia l  integral  funct ions 
E,(x) ,  which a r e  expressed  in  integral  form by 

In particular, t h e  first-order exponentia, integral 
is given by 

(H6) 
Y 

and in  s e r i e s  form by 

and the  s e r i e s  representat ion by 

In some publ icat ions the  E ,(x) function is denoted 
by -Ei ( -x) ;  tha t  is, E , ( x )  = - E i ( - x ) .  In us ing  
t a b l e s  of t h e  exponent ia l  function, caut ion should 
a lways  b e  exerc ised  so a s  not t o  confuse  - E i ( - x )  
with -E i (x ) ,  which is defined below. 

F o r  negat ive arguments, tnt: E , ( x )  function is 
frequently denoted by t h e  symbol E i ( x ) ,  which is 
defined by 

where 
In y = 0.577216 . . . , 
A , = O ,  

1 

m 

n -  1 

A n =  r: - ,  
m = 1  

and n = 0, 1, 2, 3, . . . . T h e  recursion relat ion for 
t h e  exponent ia l  integrals  is 

1 

n - 1  
E,(x)  = - [e-" - x E n - , ( x ) l  (ref. 209) . (H5) 

E i ( x )  = lI dy 

and related t o  E , ( - x )  by 

Graphs of e-" and E, (x )  for n = 1,  2, and 3 a r e  
presented in  F i g s .  3C.1 through 3C.6 (from ref. 
210). T h e  function E i ( x )  is plotted i n  F i g s .  3H.7 
through 3H.10 (from ref. 211). 

Some approximations that  a re  frequently useful  
a r e  

e- " e-x 
~ < E,(x)  5 , n 2 1 ,  
x + n  x + n  - 1 
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e-x 
E J X )  = - (1 - ( n / x )  + [n(n + 1)/x21 

X 

- [n(n + l)(n + 2)/x31 + . . .I , 
x > > 1 ,  n = O ,  

E n ( x )  =" ((1 + x + n ) / [ x  + (x + r1)~]1  e - x  , 

(ref. 212) , x > 1 

E i ( x )  - . X [ ( ! ) + ( L ) + ( ? ) + ( y +  ...I, 
x 2  x3 x4 

x > 1 0 .  (H13) 

Further  information concerning t h e  exponent ia l  
integrals  c a n  be  found in  ref. 213. 
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Fig. 3H.1. The Functions e-X ,  E , ( x ) ,  andE3(x) forx = 0 and 0.7. (Plotted from data tabulated in ref. 210,) 
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Appendix 31. Tables of Attenuation Functions 
for Finite Slab Geometry 

This appendix consists of tabulations of attenuation 
functions for slab shields and disk or rectangular 
sources obtained by integrating over a point kernel of 
the form given for gamma rays in Section 3.8.1. The 
geometry for the disk-source configuration is shown in 
Figs. 3.7 and 3.8, and that for the rectangular-source 
configuration is shown in Fig. 3.9. Data are presented 
for sources with both isotropic and cosine angular 
distributions, the isotropicsource data being taken 
from the work of Hubbell e f  af.'I4 and the cosine- 
source data from the work of Trubey.' ' s 

The variables for the disk source (see Tables 31.1 and 
31.2) are 

r(pt,ro/z,p/rc,) = dose rate, 

G(E) = flux-to-dose-rate conversion factor, 
S = source strength (particles cm-' 

S!C-'), 4n solid angle, 

pr = optical shield thickness (mfp), 
ro/z = ratio of source radius to the source- 

p/ro =distance off axis (units of source 

detector distance, 

radius), 

y = p f  sec 8. 

For the case of an isotropic source the unscattered flux 
attenuation for the dose rate on the disk axis is given by 

Y 

= ~ ~ { E , ( I . ~ ~ ) - E ~ ( P ~ J ~ + T ; T ~ ~ ~ T I N  (11) 

and for the case of a cosine current source (isotropic 
flux) it is given by 

where 

GPO = isotropic flux at the source plane. 

The variables for the rectangular source (see Tables 31.3 
and 31.4) are 

r(pt,a,b) = dose rate on perpendicular to corner, 

H , W =  height and width of rectangle (cm), 

a,b = dimensions of rectangle in units of de- 
tector distance, plus S, G(E), and p f  as 
defined above. 

For the case of an isotropic source, the unscattered 
flux attenuation function for the dose rate at a corner 
position is given by 

- E l ( p f d w ) ]  , fora z b > 1 , (13) 

and for the cosine current source (isotropic flux) it is 
given by 

fora b > 1 , (14) 

wherer' = x z  + y 2  +z'. 
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Table 31.1. Unscattered Flus from a Disk Source with an Isotropic Angular Distributiona 

47ir/S G(E) 
ro/2 pt 

p/ro = 0 p/ro = 0.2 p/ro = 0.5 p / r o  = 0.8 p / r o  = 1.0 p/ro = 1.2  p/ro = 1.5 p/ro = 2.0 p / ro  = 5.0 p/ro = 10.0 

10.0 

5.0 

2.0 

1.0 

0.5 

0 
0.01 
0.02 
0.05 

0.1 

0.2 
0.5 

1.0 

2.0 
5.0 

10.0 

0 

0.01 

0.02 
0.05 
0.1 

0.2 
0.5 
1.0 
2.0 
5.0 

10.0 

0 
0.01 
0.02 
0.05 

0.1 
0.2 

0.5 
1.0 
2.0 
5.0 

10.0 

0 
0.01 

0.02 
0.05 
0.1 

0.2 
0.5 

1.0 
2.0 
5.0 

10.0 

0 
0.01 
0.02 
0.05 
0.1 
0.2 
0.5 
1.0 
2.0 
5.0 

10.0 

1.45(l)b 
1.39( 1) 

1.34( 1) 

1.20(1) 
1.01(1) 

7.38(0) 
3.50(0) 
1.38(0) 

3.08(- 1) 
7.?2(-3) 
2.61(-5) 

1.02(1) 
9.98(0) 
9.74(0) 
9.04( 0) 
8.01 (0) 
6.35(0) 
3.37(0) 
1.37(0) 
3.08(- 1) 

7.22(- 3) 
2.61(-5) 

5.06(0) 

4.98(0) 
4.90(0) 

4.68( 0) 

4.34(0) 
3.73(0) 
2.38(0) 
1.16(0) 
2.93(- 1) 

7.21(-3) 
2.61(- 5) 

2.18(0) 

2.15(0) 

2.13(0) 
2.05(0)  
1.93(0) 

1.7 I( 0) 
1.20(0) 

6.64(- 1) 
2.05(- 1) 

2.58(-5) 

6.54(- 3) 

7.01(- 1) 

6.94(- 1) 
6.86(- 1) 
6.65(- 1) 

6.31(- 1) 
5.67(- 1) 
4.13(- 1) 

2.44(- 1) 

8.47(- 2) 
3.59(-3) 

l.89(- 5) 

1.44(1) 
1.38( 1) 

1.33(1) 
1.19(1) 
I.OO(1) 
7.34(0) 
3.5 O(0) 
1.38(0) 

3.08(- 1) 

7.22(-3) 
2.61(--5) 

1.01(1) 

9.87(0) 
9.62(0) 
8.94(0) 
7.92(0) 
6.28(0) 

3.3S(O) 
1.37(0) 
3.08(- 1) 

7.2'2-3) 
2.61(- 5) 

4.98(0) 
4.90(0) 

4.82(0) 
4.61 (0) 

4.27(0) 
3.66(0) 
2.34(0) 
1.14(0) 
2.90(- 1) 

7.20(- 3 )  
2.61f-5) 

2.15(0) 
2.12(0) 

2.10(0) 
2.02(0) 
1.90(0) 
1.69(0) 

1.18(0) 

6.51(- 1) 

2.01(- 1) 

6.42(-3) 

2.56(- 5) 

6.96(- 1) 

6.89(- 1) 
6.81(- 1) 
6.60(- 1) 
6.26(- 1) 
5.63(- 1) 

4.09(- 1) 

2.41(- 1) 

8.36(- 2) 
3.52(-3) 

1.84(-5) 
, 

1.36(1) 
1.31(1) 
1.26(1) 
1.13(1) 
9.57(0) 

7.10(0) 
3.46(0) 
1.38(0) 

3.0'8- 1) 

7.21(- 3) 
2.61(-5) 

9.42(0) 
9.19(0) 
8.96( 0) 
8.32( 0) 
7.38(0) 
5.88(0) 
3.19(0) 
1.34(0) 
3.06(- 1) 

7.21(-3) 
2.61(- 5) 

4.53(0) 
4.46(0) 

4.39(0) 
4.19(0) 

3.87(0) 
3.32(0) 
2.11(0) 
1.03(0) 
2.69(- 1) 
7.04(- 3) 

2.61(-5) 

1.99(0) 
1.96(0) 

1.94(0) 
1.87(0) 
1.76(0) 
1.55(0) 

1.07(0) 
5.85(- 1) 

1.77(- 1) 

5.70(- 3) 

2.41(-5) 

6.71(- 1) 

6.63(- 1) 
6.56(-  1) 
6.35(- 1) 
6.02(- 1) 
5.40(- 1) 
3.91(- 1) 

2.28(- 1) 

7.79(-2) 
3.17(- 3) 

1.61(-5) 

1.15(1) 
1.10(1) 
1.06(1) 
9.54(0) 
8.1 l(0) 

6.12(0) 
3.17(0) 
1.32(0) 

3.05(- 1) 

7.21(-3) 
2.61(-5) 

7.65(0) 
7.44(0) 
7.25(0) 
6.71(0) 
5.93(0) 
4.71(0) 
2.60(0) 

1.14(0) 
2.80(- 1) 

7.08(- 3) 
2.61(- 5) 

3.69(0) 

3.62(0) 
3.56(0) 
3.38(0) 
3.11(0) 
2.63( 0) 

1.63(0) 
7.78(- 1 )  

2.03(- 1) 

5.76(- 3) 
2.31(-5) 

1.72( 0) 
1.70(0) 

1.68(0) 
1.61(0) 
1.51(0) 

1.32(0) 

8.96(- 1) 

4.73(- 1) 

1.37(- 1) 

4.21(-3) 

1.78(--5) 

6.27(- 1) 

6.20(- 1) 

6.14(- 1) 

5.93(- 1) 
5.61(- 1) 
5.02(- 1) 

3.60(- 1) 

2.06(- I )  
6.85(- 2) 

2 . m -  3 )  
1.24(- 5) 

7.39(0) 
7.03(0) 
6.71(0) 
5.86(0) 
4.8 l(0) 

3.45(0) 
1.66(0) 

6.63(- 1) 

1.49(- 1) 
3.54(-3) 
1.29(-5) 

5.37(0) 
5.20(0) 

5.04(0) 
4.60(0) 
3.97(0) 
3.1 7(0) 
1.55(0) 
6.35(- 1) 
1.4'2- 1) 
3.48(- 3) 
1.2 7(- 5) 

2.96(0) 

2.90(0) 
2.84(0) 
2.69(0) 

2.45(0) 
2.03(0) 
1.2 1 (0) 

5.43(- 1) 
1.32(- 1) 
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1 .51 (0) 

1.4 9( 0) 
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1 .3  l(0) 
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3.34(- 1) 

1.89(- 1) 

6.09(- 2) 

2.16(- 3) 
9.55(- 6) 

3.60(0) 
3.33(0) 
3.08( 0) 
2.47(0) 
1.76(0) 
9,94(- 1) 

2.51(- 1) 

4 . 2 5 -  2) 

2.1 I(- 3) 

3.25(0) 
3.11(0) 
2.98(0) 
2.63(0) 
2.15(0) 
1.49(0) 
5.79(- 1) 

1.67(- 1) 
2.06(- 2) 
1.04(-4) 
2.71(- 8) 

2.26(0) 
2.21(0) 
2.16(0) 
2.02(0) 
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5. 57(- 6 )  

5.52(- 1) 
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1.03(-3) 
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1.06(- 3) 

6.65(- 6) 

l.lO(- 1) 

1.07(- 1) 

I.M(- 1) 
9.60(- 2) 

8.40(- 2) 
6.44(- 2) 
2.91(-2) 
7.83(- 3) 
6.16(-4) 
2.28(- 7) 

3.16(-2) 
1.17(- 2) 
4.31(-3) 

1.34(-4) 
1.72(-5) 

3.16(- 2) 

1.92(-2) 
1.17(-2) 
2.63(-3) 
1.01(-3) 
3.16(-4) 
4.90(- 6) 

3.15(-2) 

2.11(-2) 
1.16(- 2) 

4.30(-3) 

2.58(- 2) 

6.69(-5) 

3.13(-2) 

2.83(- 2) 

2.56(-2) 
1.90(- 2) 
1.15(- 2 )  

4.24(- 3) 

3.9'5-4) 
2.27(-6) 

3.03(- 2) 

2.88(-2) 
2.74(- 2) 
2.35(-2) 
I .83(-2)  
1. IO(- 2) 
2.41(-3) 
2.3.5-4) 



.Table 31.1. (continued) 

47ir/s G(E) 
r,/z pt 

p/ro = 0 p/ro = 0.2 p/ro = 0.5 p/r, = 0.8 p/ro = 1.0 p/ro = 1.2 p/ro = 1.5 p/ro = 2.0 p / r ,  = 5.0 p/r = 10.0 

0.2 0 
0.01 

0.02 
0.05 

0.1 
0.2 
0.5 
1.0 
2.0 
5.0 

10.0 

0.1 0 

0.01 
0.02 
0.05 
0.1 

0.2 
0.5 
1.0 

2.0 
5.0 

10.0 

1.23(- 1) 1.23(- 1) 
1.22(- 1) 1.22(- 1) 
1.21(- 1) 1.21(- 1) 

1.11(-1) 1.11(-1) 
l.Ol(- 1) l.Ol(- 1) 
7.44(- 2)  7.43(-2) 
4.49(- 2) 4.48(- 2) 
1.64(-2) 1.63(-2) 
7.91(-4) 7.87(-4) 

5.09(- 6) 5.05(- 6) 

3.13(-2) 3.12(-2) 
3.09(- 2) 3.09(-2) 
3.06(-2) 3.06(-2) 
2.97(- 2) 2.97(- 2) 
2.83(- 2) 2.83(- 2) 

2.56(- 2) 2.56(- 2) 

1.17(- 1) 1.17(--1) 

1.89(- 2) 1.89(- 2) 
1.15(-2) 1.15(-2) 

4.21(-3) 4.21(-3) 
2.08(- 4) 2. ow- 4) 
1.39(-6) 1.38(-6) 

1.22(- 1) 
1.21(- 1) 
1.20(- 1) 

1.16(- 1) 
l,lO(- 1) 
9.96(- 2) 
7.35(-2) 
4.43(- 2) 
1.60(- 2) 
7.66(-4) 

4.83(-6) 

3.12(- 2) 

3.09(- 2) 
3.06(-2) 
2.97(-2) 

2.82(- 2) 
2.55(- 2) 

1.89(-2) 
1.14(- 2) 
4.19(-3) 
2.06(-4) 
1.37(-6) 

1.20(- 1) 
1.19(- 1) 

1.m- 1) 

1.09- 1) 
9.81(- 2) 

4.33(- 2) 

1.14(- 1) 

7.22(- 2) 

1.56(-2) 
7.29(-4) 

4.45(- 6) 

3.11(-2) 
3.08(- 2) 
3.M(- 2) 
2.95(- 2) 

2.81(-2) 
2.54(- 2) 
1.88(- 2) 
1.14(- 2) 

4.16(- 3) 
2.04(-4) 
1.34(- 6) 

1.19(-1) 
1.18(-1) 

1.16(- 1) 
1.13(- 1) 

1.07(- 1) 
9.66(- 2) 
7.10(- 2) 
4.25(- 2) 
1.52(-2) 
6.97(- 4) 

4.13(- 6) 

3.10(-2) 
3.06(-2) 
3.03(-2) 
2.94(- 2) 
2.80(- 2) 
2.53(-2) 
1.87(-2) 
1.13(-2) 

4.13(- 3) 
2.04(-4) 
1.31(- 6) 

1.17(- 1) 
1.16(-1) 
1.14(- 1) 
1.11(-1) 

1.05(- 1) 
9.50(- 2) 
6.96(- 2) 
4.14(- 2) 
1.47(-2) 
6.60(- 4) 

3.78(-6) 

3.08(- 2) 
3.05(- 2) 

3,02(- 2) 
2.93(-2) 
2.79(- 2) 
2.52(-2) 
1.W- 2) 
1.12(- 2) 

4.09(-3) 
2.01(-4) 
1.28(- 6) 

1.14(- 1 )  

1.12(-1) 
1.11(-1) 
1.08(- 1) 

1.02(- 1) 
9.20(- 2) 
6.71(- 2) 
3.97(-2) 

5.97(-4) 
1.3 9(- 2) 

3.20(- 6) 
3.0'5- 2) 
3.03(- 2) 
3.00(- 2) 
2.91(- 2) 
2.76(- 2) 
2.50(- 2) 
1.84(- 2) 

1.11(- 2) 

4.03(-3) 
1.93(- 4) 
1.22(- 6) 

1.07(- 1) 

1.06(- 1) 

1.05(- 1) 
1.01(- 1) 

9.60(- 2) 
8.62(- 2) 
6.23(- 2) 
3.62(- 2) 

1.23(-2) 
4.83(-4) 

2.27(-6) 

3.01(- 2) 
2.98(- 2) 
2.95(- 2) 
2.86(-2) 

2.72(- 2) 
2.45(- 2) 

1.80(-2) 
1.08(- 2) 

3.90(-3) 
1.82(- 4) 
l.lO(-6) 

6 .23-  2) 
6.27(- 2)  

6.11(- 2) 
5.85(- 2) 

5.46(- 2) 
4.74(- 2) 
3.10(- 2) 
1.53(-2) 
3.76(- 3) 
5.71(-5) 

5.99(- 8) 
2.51(-2) 
2.48(- 2) 
2.45(- 2) 
2.37(- 2)  
2.24(- 2) 
2.00(- 2) 
1.43(- 2) 
8.20(-3) 

2.68(- 3) 
9.37(- 5) 
3.53(- 7)  

2.5%- 2) 
2.51(-2)  

2.41(-2) 

2.25(-2) 
2.02(- 2) 
l.61(- 2 ) .  
8.26(-3) 
2.71(-3) 

2.94(- 4) 
3.77(- 7) 

1.57(- 2) 
1.55(- 2) 
1.53(- 2) 
1.46(- 2) 

1.36(- 2) 
1.18(-2) 
7.75(- 3) 

3.82(-3) 

9.31(- 4) 
1.36(-5) 
1.26(-8) 

"From ref. 114 
'Read: 1.45 x IO', etc. 
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n 

n 

Table 31.2. Unscattered Flux from a Disk Source with a Cosine Angular Distribution (Isotropic Flux) 

10.0 

5.0 

2.0 

1.0 

0.5 

0.2 

0 9.ol(-l)* 
0.01 8.78(-’1) 
0.02 8.56(--1) 

0.03 8.3.5-1) 
0.1 7.08(-1) 
0.2 5.70(-1) 

0.5 3.26(-1) 
1.0 1.48(-1) 

2.0 3.7.5-2) 
5.0 9.96(-4) 

10.0 3.83(-6) 

0 8.04(-1) 
0.01 7.88(-1) 
0.02 7.72(-1) 
0.03 7.57(-1) 
0.1 6.60(--1) 
0.2 5.46(--1) 
0.5 3.23(-1) 

1.0 1.48(-1) 
2.0 3 . 7 5 ( - 2 )  

5.0 9.96(-4) 
10.0 3.83(-6) 

0 5.53(-1) 
0.01 5.45(--1) 

0.02 5.37(-1) 
0.03 5.29(-1) 

0.1 4.78(-1) 
0.2 4.14(-1) 

0.5 2.71(-1) 
1.0 1.36(-1) 
2.0 3.67(-2) 
5.0 9.96(-4) 

10.0 3.83(-6) 

0 2.93(-1) 

0.01 2.89(-1) 

0.02 2.86(-1) 
0 .03 2.83(-1) 
0.1 2.60(--1) 
0.2 ’2.31(-1) 

0.5 1.62(-1) 

1 .0  9.03(-2) 
2 . 0  2.82(-2) 
5.0 9.29(-4) 

10.0 3.80(-6) 

0 1.06(-1) 
0.01 1.04(-1) 
0.02 1.03(-1) 
0.03 l.OZ(-l) 
0.1 9.50(-2) 
0.2 8.55(-2) 
0.5 6.22(-2) 
1.0 3.67(-2) 
2.0 1.28(-2) 
5.0 5.43(-4) 

10.0 2.87(-6) 

0 1.94(-2) 
0.01 1.92(-2) 

0.02 1.90(-2) 
0.03 1.88(-2) 
0.1 1.75(-2) 

8.97(-1) 
8.75(-1) 
8.53(-1) 

8.33(-1) 
7.06(-1) 
5.70(-1) 
3.26(-1) 
1.48(-1) 

3.75(-2) 
9.96(-4) 
3.81(-6) 

7.98(-1) 
7.82(-1) 
7.67(--1) 
7.5‘2-1) 
6.56(-1) 
5.43(-1) 
3.2’2-1) 

1,48(-1) 

3.75(-2) 
9.96(-4) 
3.83(-6) 

5.44(-1) 

5.36(-1) 
5.28(- 1) 
5.21(-1) 
4.71(-1) 
J.O8(-1) 

2.67(-1) 
1.34(-1) 

3.64(-2) 
9.95(-4) 

3.83(-6) 

2.88(-1) 

2 .M-1)  

2.81(-1) 
2.77(-1) 

2.55(-1) 

1,59(-1) 

8.84(-2) 
2.76(-2) 

9.13(-4) 
3.77(-6) 

1.04(-1) 
1.03(-1) 

2.27(--1) 

1.02(-1) 
1.01(-1) 
9.40(-2) 
8.45(-2) 

6.1.5-2) 
3.62(-2) 

1.26(-2) 
5.3X-4) 
2.80(-6) 

1.94(-2) 
1.92(-2) 

1.90(-2) 
1.88(-2) 
1.75(-2) 

8.77(-1) 
8.5 5( - 1) 
8.35(-1) 

8.15(-1) 
6.95(--1) 
5. €4- 1) 

3.26(-1) 
1.48(-1) 

3.75(--2) 
9.96(-4) 
3.83(-6) 

7.61(-1) 
7.46(--1) 
7.32(-1) 
7.18(-1) 
6.28(-1) 
.5.23(-1) 
3 , lS(- l )  

1.47(-1) 
3.75(-2) 

9.96(-4) 
3.83(-6) 

4.94( - 1) 

4.87(--1) 
4.79(-1) 
4.73(-1) 

4.27(-1) 
3.7 O( - 1) 

2.43(-1) 
1.23(-1) 
3.43(-2) 
9.79(-4) 
3.82(-6) 

2.61(-1) 

2.57(-1) 

2.54(-1) 
2.51(-1) 

2.31(-1) 
2.04(--1) 

1.43(-1) 

7.86(--2) 
2.44(-2) 

8.17(-4) 
3.54(-6) 

9.9 1(-2) 
9.81(-2) 
9.70(-2) 
9.60(-2) 
8.90(-2) 

7.99(-2) 
5.79(-2) 

3.38(-2) 
1.16(-2) 
4.75(-4) 
2.45(-6) 

1.91(-2) 
1.90(-2) 

1.88(-2) 
1.86(-2) 
1.73(-2) 

7.88(-1) 
7.70(-1) 
7.53(-1) 
7.36(--1) 
6.35(--1) 
5.23(-1) 
3.12(-1) 
1.46( - 1) 

3.74(-2) 
9.96(-4) 
3.8’2-6)  

6.30(- 1) 

6.18(-1) 
6.06(-1) 
5.95(- 1) 

5.23(- 1) 
4.39(-1) 

2.71(-1) 
1.31(-1) 

3.52(-2) 
9 .M-4)  
3.83(-6) 

3.84(-1) 

3.78(-1) 
3.7’2-1) 
3.67(-1) 
3.30(-1) 
2 . M - 1 )  
1.85(-1) 
9.37(-2) 

2.64(-2) 
8.07(-4) 

3.42(-6) 

2.15(-1) 
2.12(-1) 

2.09(-1) 
2.07(- 1) 

1 .W-1)  
1.66(-1) 

1.14(-1) 

6.16(-2) 
1.85(-2) 

6.02(-4) 
2.6X-6) 

9.01(-2) 
8.91(-2) 

8.81(-2) 
8.71(-2) 
8.06(-2) 

7.22(-2) 
5.18(-2) 

2.98(-2) 
9.96(-3) 

3 .W-4)  
1.86(-6) 

1.87(-2) 

1.85(-2) 

1 . U - 2 )  
1.82(-2) 
1.69(-2) 

4.30(--1) 
4.19(-1) 

4.08(- 1) 
3.97(-1) 
3.36(--1) 
2.71(-1) 
1.57(-1) 
7.19(-2) 

1.83(-?) 
4.91 (-4) 

1.89(-6) 

3.83(--1) 
3.74(- 1) 

3.66(-1) 
3.58(- 1) 

3.09(-1) 
2.54(-1) 

1 .SO(- 1) 

6.95(-2) 
1.79(-2) 

4.8‘2-4) 

1.87(-6) 

2.81(-1) 
2.77(-1) 
2.72(--1) 
2.68( - 1) 
2.39(-1) 
2.03(-1) 

1.28(- 1) 

5.20(-2) 

4.57(-4) 

1.65(-2) 

1.80(-6) 

1.79(-1) 
1.76(-1) 

1.74(-1) 

1.72(-1) 

1.56(- 1) 

9.20(-2) 

4.83(-2) 
1.39(-2) 
4.14(-4) 

1.68(-6) 

8.27(-2) 

1.37(--1) 

8.17(-2) 
8.08(-2) 
7.99(-2) 
7.38( -2) 
6.59(-2) 
4.69(-2) 

2.66(-2) 
8.66(-3) 
3.14(-4) 
1.42(-6) 

1.84(-2) 
1.82’(-2) 

1.80(-2) 

1.78(-2) 
1.66(-2) 

9.65(-2) 
9.10(-2) 
8.60(-2) 
8.13(-2) 
5.65(-2) 
3.57(-2) 

1.12(-2) 

1.19(-4) 
5.05(-8) 

2.85(-13) 

1.54(-1) 
1.49(-1) 
1.44(-1) 

2.16(-3) 

1.40(-1) 

1.12(-1) 
8.3 7( -2) 
3.84(-2) 

1.25(-2) 

1.01(-5) 

3.73(-9) 

1.86(-1) 
1.8’2-1) 

1 . 7 9 -  1) 

1.7%-1) 
1.53(- 1) 

1.27(-1) 
7.48(-2) 
3.29(-2) 
7.38(-3) 
1.37(-4) 
3.07(-7) 

1,43(-1) 

1.41(-1) 

1.39(-1) 
1.37(-1) 

1.77(-3) 

1.24(- 1) 
1.08(-1) 

7.05(-2) 

3.55(-2) 
9.5 1(-3) 
2.4 l (-4) 

7.93(-7) 

7.47(-2) 
7.39(-2) 
7.30(-2) 
7.22(-2) 
6.65(-2) 
5.91(-2) 
4.16(-2) 
2.32(-2) 
7.33(-3) 
2.45(-4) 

1.01(-6) 

1.79(-2) 
1.78(-2) 

1.76(-2) 
1.74(-2) 
1.62(-2) 

2.79(-2) 

2.51(-2) 
2.27(-2) 
2 . 0 5 ( - 2 )  
1.06(-2) 
4.55(-3) 
5.01(-4) 
1.98(-5) 
5.43(-8) 
3.7’2-15) 

h 

5.25(-2) 
4.98(-2) 
4.72(-2) 
4.4~3-2) 
3.14(-2) 
1.94(-2) 
5.34(-3) 

8.10(-4) 

2.77(-5) 
2.90(-9) 
1.64(-15) 

9.50(-2) 
9.27(-2) 
9.04(-2) 
8.82(-2) 

7.43(-2) 
5.85( -2) 

2.94(-2) 
1.02(-2) 
1.49(-3) 
8.77(-6) 

3.29(-9) 

9.8.5-2) 

9.69(-2) 

9.54(-2) 
9.38(-2) 

8.37(-2) 
7.12(-2) 

4.42(-2) 

2.04(-2) 
4.68(-3) 

7.93(-5) 

6.28(-2) 

1.45(-7) 

6.20(-2) 
6.12(-2) 
6.0.5-2) 
5.54(-2) 

4.90(-2) 
3.38(-2) 

1.83(-2) 
5.43(-3) 
1.55(-4) 

5.16(-7) 

1.72(--2) 
1.70(-2) 
1.68(-2) 

1.67(-2) 
1.55(-2) 

8.515-3) 

7.25(-3) 
6.1.5-3) 

5.23(-3) 
1.77(-3) 
4.24(-4’ 

9.12(-6) 
2.73(-8) 
4.86(-13) 

h 

h 

1.68(-2) 
1.54(-2) 

1.42(-2) 
1.3 l(G-2) 
7.41(-3) 

3.4’2-3) 

4.07(-4) 
1.66(--5) 
4.61(-8) 
3.20(-15) 

h 

3.70(-2) 
3.57(-2) 

3.47(-2) 
3.33(-2) 

2.60(-2) 
1.85(-2) 
6.85( -3)  

1.46(-3) 
8.58(-5) 

3.79(-8) 

2.17(-13) 

5.18(-2) 
5.08(-2) 

4.98(-2) 

4.88(-2) 
4 . 2  3 ( - 2 )  
3.46(--2) 

1.91(-2) 

7.27(-3) 
1.16(-3) 

7.24(-6) 
2.78(-9) 

4.50(-2) 
4.44(-2) 

4.38(-2) 
4.3’2-2) 
3.9’2-2) 
3.41(-2) 
2.26(-2) 
1.14(-2) 
2.97(-3) 
5.95(-5) 
1.17(-7) 

1.57(-2) 
1 . S - 2 )  
1.54(-2) 

1.52(-2) 
1.41(-2) 

4.18(-4) 

2.57(-4) 
1.59(-4) 

9.80(-5) 
3.59(-6) 
3.73(-8) 
8.01(-14) 

6.52(-23) 
b 

h 

h 

8.35(-4) 

6.55(-4) 
5.13(-4) 
4.03(-4) 

7.5 1(-5) 

7.13(-6) 
7.94(-9) 

1.57(-13) 
1.25(-22) 

h 

h 

2.06(-3) 

1.87(-3) 

1.69(-3) 
1.54(-3) 
7.77(-4) 
2.96( -4) 

1.72(-5) 
1.74(-7) 
2.54(-11) 
2.39(-22) 

h 

3.93(-3) 
3.74(-3) 

3.38(-3) 
3.56(-3) 

2.39(-3) 
1.46(-3) 

3.35(-4) 

3 .0  1(-5) 
2. 78(- 7) 

4.16(-13) 
1.84(-22) 

6.60(-3) 
6.43(-3) 
6.26(-3) 
6.09(-3) 
5.07(-3) 
3.89(-3) 
1.77(-3) 
4.80(-4) 

3.67(-5) 
2.07(-8) 
1.28(-13) 

7.10(-3; 
7.00(-3) 
6.90(-3) 

6.80(-3) 
6.16(-3) 

5.06(-5) 
1.87(-5) 
6.96(-6) 
2.59(--6) 

2.75(-9) 
1.84(-13) 

1.13(-25) 
h 

h 

h 

h 

l.Ol(-4) 
6.15(-5) 
3.75(-5) 
2.28(--5) 
7.24(-7) 
5.49(-9) 
3.19(-15) 

2.24(-25) 
b 

h 

h 

2.5’2-4) 

2.06(-4) 
1.69(-4) 
1.39(-4) 
3.46(-5) 

4.80(-6) 
1.35(-8) 

8.95(-13) 
5.82(-21) 

b 

h 

4.98(-4) 
4.5 l (-4) 

4.08(-4) 
3.69(-4) 

1 . M - 4 )  
6.79(--5) 

3.48(-6) 

2.57(-8) 
1.63(-12) 
8.52(-25) 

h 

9.52(-4) 
9.05(-4) 
8.5 1(-4) 
8.18(-4) 
5.74(-4) 
3.46(-4) 
7.61(--5) 
6.16(-6) 

4.2 2(-8) 
1.78(-14) 
7.29(-25) 

1.80(-3) 
1.76(-3) 
1.72(-3) 

1.68(-3) 
1.44( - 3 )  
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Table 31.2. (continued) 

2 w 0  cm 
ro/z Pl  

p/r, = 0 p/r, = 0.2 p/ro = 0.5 p/ro = 0.8 p/ro = 1.0 p/r, = 1.2 p/ro = 1.5 p/ro = 2.0 p/r, = 5.0  p/ro = 10.0 

0.2 
0.5 

1.0 
2 . 0  
5.0 
10.0 

0.1 0 
0.01 
0.02 
0.03 
0.1 
0.2 
0.5 
1.0 
2.0 
5.0 

10.0 

1.59(-2) 

1.17(-2) 
7.07(-3) 
2.58(-3) 
1.25(-4) 
8.00(-7) 

4.96(-3) 

4.91(-3) 
4.86(-3) 
4.82(-3) 
4.49(-3) 
4.06(-3) 
3.01(-3) 
1.82(-3) 
6.68(-4) 

3.30(-5) 
2.20(-7) 

1.58(-2) 

1.17(-2) 
7.05(-3) 
2.57(-3) 
1.24(-4) 
7.93(-7) 

4.96(-3) 

4.91(-3) 
4.86(-3) 
4.81(-3) 
4.49(-3) 
4.06(-3) 

3.Oq-3) 
1.82(-3) 
6.68(-4) 
3.30(-5) 
2.19(-7) 

1.56(-2) 

1.15(-3) 
6.94(-3) 
2.52(-3) 
1.20(-4) 
7.57(-7) 

4.94(-3) 
4.89(-3) 
4.85(-3) 
4.80(-3) 
4.47(-3) 
4.04(-3) 
2.99(-3) 
1.8 1(-3) 
6.W-4) 

3.2 7(-5) 
2.16(-7) 

1.53(-2) 
1.12(-2) 
6.75(-3) 
2.43(-3) 

1.14(-4) 
6.94(-7) 

4.92(-3) 
4.87(-3) 
4.82(-3) 
4.77(-3) 
4.4.5-3) 
4.02(-3) 
2.97(-3) 
1.80(-3) 
6.58(-4) 

3.22(-5) 
2.11(-7) 

1.50(-2) 
1.10(-2) 

6.57(-3) 
2.35(-3) 
1.08(-4) 
6.41(-7) 

4.89(-3) 

4 .M-3)  
4.79(-3) 
4.74(-3) 
4.42(-3) 
4.00(-3) 
2.95(-3) 
1.79(-3) 
6.52(-4) 
3 . B - 5 )  
2.06(-7) 

1.46(-2) 
1.07(-2) 
6.37(-3) 
2.26(-3) 
1.02(-4) 
5.82(-7) 

4.86(-3) 
4.81(-3) 
4.76(-3) 
4.71(-3) 
4.39(-3) 
3.97(-3) 
2.93(-3) 
1.77(-3) 
6.45(-4) 
3.12(-5) 
2.01(-7) 

1.39(-2) 
1.02(-2) 
6.02(-3) 
2.1 1(-3) 
9.08(-5) 
4.88(-7) 

4.80(-3) 
4.75(-3) 
4.71(-3) 
4 .M-3)  
4.34(-3) 
3.92(-3) 
2.89(-3) 
1.74(-3) 
6.33(-4) 

3.03(-5) 
0.91(-7) 

1.27(-2) 
9.16(-3) 
5.34(-3) 
1.81(-3) 
7.16(-5) 
3.36(-7) 

4.68(-3) 
4.64(-3) 
4 . 9 - 3 )  

4.54(-3) 
4.23(-3) 
3.82(-3) 
2.81(-3) 
1.69(-3) 
6.07(-4) 

2.83(-5) 
1.72(-7) 

5.35(-3) 
3.51(-3) 
1.74(-3) 
4 .W-4)  
6.57(-6) 
6.77(-9) 

3.57(-3) 
3.5 3(-3) 
3.49(-3) 
3.45(-3) 
3.19(-3) 
2.85(-3) 
2.04(-3) 
1.17(-3) 
3.81(-4) 
1.34(-5) 
5.06(-8) 

1.15(-3) 
5.91(-4) 
1.95(-4) 

2.12(--5) 
2.88(-8) 
5.46(--13) 

1.77(-3) 
1.74(-3) 
1.72(-3) 
1.70(-3) 

1.54(-3) 
1.33(-3) 
8.73(-4) 
4.31(-4) 
1.05(-4) 
1 .S4(-6) 
1.37(-9) 

aRead: 9.01 x etc. 
bEffectively zero. 

Table 31.3. Unscattered Flux at a Corner Position from a Rectangular Plane Source 
with an Isotropic Angular Distributiona 

~~~ 

b = 0 . 1  b = 0.2 b = 0.2 b = 0.5 b = 0.5 b = 0.5 
a = 0.1 a = 0 . 1  a = 0.2 a = 0.1 a = 0.2 a = 0.5 

P' 

0 9.93(-3)b 1.97(-2) 3.90(-2) 4.62(-2) 9.16(-2) 2.16(-1) 
2.14(-1) 0.01 9.83(-3) 1.95(-2) 3.86(-2) 4.57(-2) 9.07(-2) 
2.11(-1) 4.53(-2) 8.97(-2) 
2.05(-1) 0.05 9.44(-3) 1.87(-2) 3.70(-2) 4.39(-2) 8.69(-2) 

0.1 8.99(-3) 1.78(-2) 3.52(-2) 4.17(-2) 8.25(-2) 1.94(-1) 
0.2 8.13(-3) 1.61 (-2) 3.18(-2) 3.75(-2) 7.43(-2) 1.74(-1) 
0.5 6.02(-3) 1.19(-2) 2.35(-2) 2.75(-2) 5.44(-2) 1.26(-1) 

0.02 9.74(-3) 1.93(-2) 3.82(-2) 

1.0 3.64(-3) 7.18(-3) 1.42(-2) 1.64(-2) 3.23(-2) 7.38(-2) 
2.53(-2) 2 .0  1.34(-3) 2.62(-3) 5.14(-3) 5.79(-3) 1.14(-2) 

5.0 6.60(-5) 1.28(-4) 2.47 (-4) 2.60(-4) 5.04(-4) 1.04(-3) 
5.15(-6) 1.50(-6) 2.8 3( - 6) 10.0 4.37(-7) 8.26(-7) 1.54(-6) 

b = 1.0 b =  1.0 b = 1.0 b = 1.0 b = 2.0 b = 2.0 
P a = 0.1 a = 0.2 a = 0.5 a = 1.0 a = 0.1 a = 0.2 

0 
0.01 
0.02 
0.05 
0.1 
0.2 
0.5 
1.0 
2.0 
5.0 

10.0 

7.83(-2) 
7.75(-2) 
7.66(-2) 
7.40(-2) 
7.00(-2) 

6.26(-2) 
4.47(-2) 
2.56(-2) 
8.49(-3) 
3.85(-4) 
1.67(-6) 

1.55(- 1) 
1:54(-1) 
1.52(-1) 
1.47(-1) 
1.39(-1) 

1.24(-1) 
8.85(-2) 

5.06(-2) 

7.55(-4) 
3.16(-6) 

1.67(-2) 

3.69(- 1) 
3.65(-1) 
3.60(-1) 
3.48(-1) 
3.29(-1) 

2.93(-1) 
2.07(-1) 
1.17(-1) 

3.74(-2) 
1.77(-3) 
5.77(-6) 

, 6.40(-1) 
6.32(-1) 
6.24(-1) 
6.01(-1) 
5.65(-1) 
4.99(-1) 
3.45(-1) 
1.87(-1) 

5.61(-2) 
7.99(-3) 
6.4 9(-6) 

1.10(-1) 

1.09(-1) 
1.08(-1) 
1.04(-1) 
9.70(-2) 
8.53 (-2) 
5.82(-2) 
3.14(-2) 

9.57(-3) 
3.37(-4) 
1.67(-6) 

2.19(-1) 
2.17(-1) 
2.14(-1) 
2.06(-1) 
1.93(-1) 

1.69(-1) 
1.15(-1) 
6.20(-2) 
1.88(-2) 
6.54(-4) 
3.16(-6) 
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Table 31.3. (continued) 

b = 2.0 b = 2.0 b = 5.0 b = 5.0 b = 5.0 b = 2.0 
Pt a = 0.5 a = 1.0  a = 2 . 0  a = 0.1 a = 0.2 a = 0.5 

0 5.25(-1) 9.31(-1) 1.41 (0) 1.37(-I) 2.73(-1) 6.57(-1) 
0.01 5.18(-1) 9.18(-1) 1.38(0) 1.35(-1) 2.68(-1) 6.46(-1) 

0.02 5.11 (-1) 9.05(-1) 1.36( 0 )  1.33(- 1) 2.64(-1) 6.35(-1) 
0.05 4.91 (-1) 8.67(-1) 1.30(0) 1.26(-1) 2.5 1(-1) 6.03(-1) 
0.1 4.60(-1) 8.07(-1) 1.20(0) 1.16(-1) 2.31(-1) 5.55(-1) 
0.2 4.03(- 1) 7.01(-1) 1.02(0) 9.93(-2) 1.97(- 1) 4.72(-1) 
0.5 2.72(-1) 4.62(-1) 6.38(-1) 6.38(-2) 1.27(-1) 3.00(- 1) 
1 .0  1.44(- 1) 2.35 (-1) 3.02(- 1) 3.27(-2) 6.46(-2) 1.50(-1) 
2.0 4.24(-2) 6.43(-2) 7.46(-2) 9.69(-3) 1 .go(-2) 4.28(-2) 
5.0 1.32 ( - 3 )  1.75(-3) 1 .S0(-3) 3.37(-4) 6.54(-4) 1.35(-3) 

10.0 5.79(-6) 6.51(-6) 6.52(-6) 1.67(-6) 3.16(-6) 5.79(-6) 

- b = 5.0 b = 5.0 b = 5 . 0  b = 10.0 b = 10.0 b = 10.0 
P a = 1.0 a = 2.0 a = 5.0 a = 0 . 1  a = 0.2 a = 0.5 

0 
0.01 

0.02 
0.05 
0.1 
0.2 
0.5 
1 .0  
2.0 
5.0 

10.0 

1.19(0) 
1.17(0) 
1.15(0) 
l.OS(0) 
9.92(-1) 
8.35(-1) 
5.14(-1) 
2.47(-1) 
6.5 1(-2) 
1.75(-3) 
6.5 1(-6) 

l.SS(0) 

l.SO(0) 
1.84(0) 

1.69(0) 
1.53(0) 
1.26(0) 
7.27(--1) 
3.20(-1) 
7.57(-2) 
1.80(-3) 
6.53(-6) 

2.73(0) 
2.65 (0 )  

2.58(0) 
2.39(0) 
2.10(0) 
1.64(0) 
8.53(-1) 
3.44(-1) 
7.69(-2) 
1.80(-3) 
6.54(-6) 

1.47(-1) 
1.44(-1) 
1.41(--1) 
1.33(-1) 
1.21(-1) 
1.02(-1) 
6.42(-2) 
3.27(-2) 
9.69(-3) 
3.37(-4) 
1.6 7( -6) 

2.92(-1) 
2.86(-1) 
2.81(-1) 
2.65(--1) 
2.41(-1) 
2.02(-1) 
1.27(-1) 
6.47(-2) 
1.90(-2) 
6.54(-4) 
3.16(-6) 

7.06(-1) 
6.92(-1) 
6.77(-1) 
6.38(-1) 
5.79(- 1) 
4.84(- 1) 
3.01(-1) 
1.50(-1) 
4.28(-2) 
1.35(-3) 
5.79(-6) 

b = 20.0 b = 10.0 b = 20.0 b = 10.0 b = 10.0 b = 10.0 
/If a = 1.0 a = 2.0 a =5.0 a = 10.0 a = 0.1 a = 0.2 

0 1.2 8( 0) 2.07(0) 3.15(0) 3.80(0) 1.52(-1) 3.02(- 1) 
0.01 1.26(0) 2.02(0) 3.04(0) 3.64( 0) 
0.02 1.23(0) 1.97(0) 2.94(0) 3.4 9( 0) 
0.05 1.15(0) 1.83((?) 2.67(0) 3.10(0) 1.36(-1) 2.70(-1) 
0.1 1.04(0) 1.6 3( 0) 2.30(0) 2.58(0) 1.22(-1) 2.43(-1) 
0.2 8.60(-1) 1.3 l (0)  1.74(0) 1.86(0) 1.02(- 1) 2.03(-1) 

1.48(-1) 2.95(-1) 
1.45 (-1) 2.88(-1) 

0.5 5.18(- I)  7.34(--1) 8.65k-1) 8.78(-1) 6.39(-2) 1.27(- 1) 
1.0 2.47(-1) 3.21(-1) 3.44(- 1) 3.45(-1) 3.27(-2) 6.47( -2) 

2.0 6.5 1(-2) 7.5 6(-2) 7.69( - 2) 7.68(-2) 9.69(-3) 1.90(-2) 
5.0 1.75(-3) 1. SO(-3) 1.80(-3) 1. SO(-3) 3.37(-4) 6.54(-4) 

10.0 6.51(-6) 6.53(-6) 6.53(-6) 6.5 3( -6) 1.67(-6) 3.16(-6) 
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Table 31.3. (continued) 

b = 20.0 b = 20.0 b = 20.0 b = 20.0 b = 20.0 
a = 0.5 a = 1.0 a = 2.0 a = 5 . 0  a = 10.0 a = 20.0 

b = 20.0 Pt 

0 
0.01 
0.02 

0.05 
0.1 
0.2 
0.5 
1.0 
2.0 
5.0 

10.0 

7.3 1(-1) 
7.13(-1) 
6.96(-1) 
6.50(-1) 
5.86(-1) 
4.86(- 1) 
3.01(-1) 
1.50(-1) 
4.28(-2) 
1.35(-3) 
5.79(-6) 

1.33(0) 
1.30(0) 
1.27(0) 
1.18(0) 
1.05(0) 
8.63(-1) 
5.18(-1) 
2.47(-1) 
6.5 1(-2) 
1.75(-3) 
6.51(-6) 

2.17(0) 
2.10(0) 
2.04( 0) 
1.88( 0) 
1.65(0) 
1.31(0) 
7.34(0) 
3.2 1 (0) 
7.56(-2) 
1.80(-3) 
6.53(-6) 

3.3 8( 0) 

3.25(0) 
3.12(0) 
2.79(0) 
2.36(0) 
1.75(0) 
8.63(-1) 
3.44(-1) 
7.69(-2) 
1. SO( -3) 
6.5 3 (-6) 

4.22(0) 
4.01(0) 
3.81(0) 
3.30(0) 
2.68(0) 
1.89(0) 
8.79(-1) 
3.45(-1) 
7.68(-2) 
1. 80(-3) 
6.5 3 (-6) 

4.88(0) 
4.56(0) 
4.28(0) 
3.59(0) 
2.81(0) 
1.92(0) 
8.82(-1) 
3.45(-1) 
7.68(-2) 
1.80(-3) 
6.53(-6) 

=From ref. 114. 

bRead: 9.93 X etc. 

Table 31.4. Unscattered Flux at a Corner Position from a Rectangular Plane Source 
with a Cosine Angular Distribution (Isotropic Flux) 

Pt b = 0.1 b = 0.2 b = 0.2 b = 0.5 b = 0.5 b = 0.5 
a = 0.1 a = 0.1 a = 0.2 a = 0.1 a = 0.2 a = 0.5 

0 
0.01 
0.02 
0.05 

0.1 

0.2 
0.5 
1.0 
2.0 
5.0 

10.0 

1.58(-3)= 
1.56(-3) 
1.55(-3) 
1.53(-3) 
1.43(-3) 
1.29(-3) 
9.54(-4) 
5.78(-4) 
2.12(-4) 
1.04(-5) 
6.92(-8) 

3.11(-3) 
3.08(-3) 
3.04(-3) 
3.01(-3) 
2.81 (-3) 
2.54(-3) 
1.88(-3) 
1.13(-3) 
4.14(-4) 
2.01(-5) 
1.30(-7) 

6.12(-3) 
6.06(-3) 
6.00(-3) 

5.94 (- 3) 
5.53(-3) 
5.00(-3) 

3.69(-3) 
2.22(-3) 
8.08(-4) 
3.87(-5) 
2.45 (-7) 

7.09(-3) 
7.01(-3) 

6.94(-3) 
6.87(-3) 
6.39(-3) 
5.76(-3) 

4.2 2( -3) 
2.51(-3) 
8.90(-4) 
4.00(-5) 
2.3 1 (- 7) 

1.40(-2) 
1.38(-2) 
1.37(-2) 
1.36(-2) 
1.26(-2) 
1.14(-2) 

8.30(-3) 
4.93(-3) 
1.74(-3) 
7.70(-5) 
4.36(-7) 

3.21(-2) 
3.17(-2) 
3.14(-2) 
3.10(-2) 
2.88(-2) 

2.59(-2) 
1.88(-2) 
1.10(-2) 
3.77(-3) 

7.79(-7) 
1.54(-4) 

b =  1.0 b = 1.0 b = 1.0 b = 1.0 b = 2.0 b = 2.0 
a = 0.1 a = 0.2 a =0.5 a = 1.0 a = 0.1 a = 0.2 P 

0 
0.01 
0.02 
0.05 
0.1 
0.2 
0.5 
1.0 
2.0 
5.0 

10.0 

1.12(-2) 
1.11(-2) 
1.08(-2) 
1 .08(-2) 
1.00(-2) 
8.98(-3) 
6.44(-3) 
3.71(-3) 
1.24(-3) 
4.91 (-5) 
2.54(-7) 

2.21(-2) 
2.19(-2) 
2.17(-2) 
2.14(-2) 
1.98(-2) 
1.77(-2) 
1.27(-2) 
7.29(-3) 
2.43(-3) 

9.47(-5) 
4.79(-7) 

5.12(-2) 
5.06(-2) 
5.01(-2) 
4.95(-2) 
4.5 7 (-2) 
4.07(-2) 
2.89(-2) 
1.64(-2) 

5.3 0(-3) 
1.91(-4) 
8.61(-7) 

8.33(-2) 
8.23(-2) 
8.13(-2) 
8.03(-2) 
7.38(-2) 
6.5 3( - 2) 
4.54(-2) 
2.49(-2) 
7.5 7 (-3) 

9.54(-7) 
2.38(-4) 

~~ 

1.42(-2) 
1.40(-2) 
1.38(-2) 
1.37(-2) 
1.25(-2) 
1.11(-2) 
7.71(-3) 
4.26(-3) 
1.35(-3) 
5.00(-5) 
2.55(-7) 

2.8 1(-2) 
2.77(-2) 
2.74(-2) 
2.70(-2) 
2.48(-2) 
2.19(-2) 

1.52(-2) 
8.38(-3) 

2.64(-3) 
9.65(-5) 
4.80(-7) 
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Table 31.4. (continued) 

2rD.O G(E) 

b = 2.0 b = 2.0 b = 2.0 b = 5.0 b = 5 .0  b = 5.0 
I l t  a = 0.5 a = 1 .0  a = 2.0 a = 0 . 1  a = 0.2 a = 0 . 5  

0 
0.01 
0.02 
0.05 
0.1 
0.2 
0.5 
1.0 

2.0 
5 .0  

10.0 

6.55(-2) 
6.47( -2) 
6.39(-2) 
6 .3  0(-2) 
5.77(-2) 
5 .08(-2) 
3.49(-2) 
1.89(-2) 
5.78(-3) 

1.95 (-4) 
8.63(-7) 

1.09(-1) 
1.08(- 1) 
1.06(- 1) 
1.05(-1) 
9.52(-2) 
8.32(-2) 
5. S8(-2) 
2.9 2( -2) 
8.34(-3) 
2.44(-4) 
9.5 6( - 7) 

1.48(-1) 
1.45(-1) 
1.43(-1) 
1.41(- 1) 
1.27(-1) 
1.09(-1) 
7.05(-2) 
3.49(-2) 
9.26(-3) 
2.4 9(-4) 
9.58(-7) 

1.56(-2) 
1.5 3 (-2) 
1.51(-2) 
1.49(-2) 
1.35(-2) 
1.18(-2) 
8.02(-3) 
4.33(-3) 
1.35(-3) 
5.00(--5) 
2.5 5(- 7) 

3.08(-2) 
3.04(-2) 
3.00(-2) 

2.68(-2) 
2.34(-2) 

2.95(-2) 

1.58(-2) 
8.53(-3) 
2.65(-3) 
9.65 (-5) 
4.80(-7) 

7.23(-2) 
7.12(-2) 
7.02(-2) 
6.92(-2) 
6.2 6( -2) 
5.45(-2) 
3.64(-2) 
1.93(-2) 
5.81(-3) 
1.95(-4) 
8.63(-7) 

~~ 

b = 10.0 b = 5.0 b = 5.0  b = 5.0 b = 10.0 b = 10.0 
P a = 1 .0  a = 2.0 a = 5.0 a = 0.1 a = 0.2 a = 0.5 

0 
0.01 
0.02 
0.05 

0.1 
0.2 
0.5 
1 .0  
2.0 
5.0 

10.0 

1.22(-1) 
1.20(-1) 
1.18(-1) 
1.16(-1) 
1.05(-1) 
9.02(-2) 
5.87(-2) 
2.99(-2) 

2.44(-4) 
9.56(-7) 

8.38(-3) 

1.70(-1) 
1.67(-1) 
1.64(-1) 
1.62(-1) 
1.43[- 1) 
1.21(- 1) 
7.5 1(-2) 
3.59(-2) 
9.32(-3) 
2.49( -4) 
9.58(-7) 

2.06(- 1) 
2.01(-1) 

1.93(-1) 

1.97(-1) 

1.68(- 1) 
1.38(-1) 
8.10(-2) 
3.71 (-2) 
9.3 8(-3) 
2.49( -4) 
9.5 8(- 7) 

1.58(-2) 
1.5 6(-2) 
1.58(-2) 
1.5 1(-2) 
1.37(-2) 
1.19(-2) 

4.33(-3) 
1.35(-3) 
5.00(-5) 
2.5 5(-7) 

8.02(-3) 

3.13(-2) 
3.08(-2) 
3.04(-2) 
2.99(-2) 
2.70(-2) 
2.35(-2) 
1.58(-2) 
8.53(-3) 
2.65(-3) 
9.65(-5) 
4.80(-7) 

7.34(-2) 
7.23 (-2) 
7.12(-2) 
7.01(-2) 
6.32(-2) 
5.48(-2) 
3.65(-2) 
1.93(-2) 
5.81(-3) 
1.95 (-4) 
8.63(-7) 

b = 10.0 b = 10.0 b = 10.0 b = 10.0 b = 20.0 b = 20.0 
P' a = 1 . 0  a = 2 . 0  a = 5.0 a = 0.1 a = 0.2 a = 10.0 

0 

0.01 
0.02 
0.05 
0.1 
0.2 
0.5 
1.0 
2 .0  
5 .0  

10.0 

1.24(-1) 
1.22(-1) 
1.20(-1) 
1.18(-1) 
1.06(-1) 
9.08(-2) 
5.88(-2) 
2.99(-2) 
8.38(-3) 
2.44(-4) 
9.56(-7) 

1.75(-1) 
1.71(-1) 
1.68(- 1) 
1.65(-1) 
1.46(-1) 
1.22(-1) 
7.53(-2) 
3.59(-2) 
9.32(-3) 
2.49(-4) 
9.58(-7) 

2.15(-1) 
2.10(-1) 

2.01(-.l) 
2.05(-1) 

1.72(-1) 
1.40(-1) 
8.13(-2) 
3.71(-2) 
9.38(-3) 

9.58(-7) 
2.49(-4) 

2.28(-1) 
2.22(-1) 

2.11(-1) 
1.78(-1) 
1.43(-1) 
8.17( -2) 
3.71(-2) 
9.38(-3) 
2.49(-4) 
9.5 8(- 7) 

2.16(-1) 

1.58(-2) 
1.56(-2) 
1.54(-2) 
1.5 1(-2) 
1.37(-2) 
1.19(-2) 
8.02(-3) 
4.33(-3) 
1.35(-3) 
5.00(-5) 
2.55(-7) 

3.14(-2) 
3.09(-2) 

3.00(-2) 
3.04(-2) 

2.7 1(-2) 
2.35 (-2) 
1.58(-2) 
8.53(-3) 
2.65(-3) 
9.65(-5) 
4.81(-7) 
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Table 31.4. (continued) 

b = 20.0 

a = 20.0 

Pt b = 20.0 b = 20.0 b = 20.0 b = 20.0 b = 20;O 
a = 10.0 a = 0.5 a = 1.0 a = 2.0 a =5.0 , 

0 
0.01 

0.02 
0.05 

0.1 

0.2 

0.5 
1.0 

2.0 

5.0 
10.0 

7.37(-2) 

7.26(-2) 
7.14(-2) 
7.03(-2) 

6.33(-2) 

5.48(--2) 

3.65(-2) 
1.93(-2) 

5.81 (-3) 

1.95( -4) 
8.63(-7) 

1.25(-1) 

1.23(- 1) 

1.21(-1) 
1.19(-1) 

1.06(-1) 

9.08(-2) 

5.88(-2) 

2.99(-2) 

8.38(-3) 

2.44(-4) 
9.56(-7) 

1.76(-1) 

1.72(-1) 

1.69(-1) 
1.66(-1) 

1.46(- 1) 

1.22(-1) 

3.59(-2) 

7.53(-2) 

9.32( - 3) 

2.49(-4) 
9.5 8( -7) 

2.18(-1) 

2.12(--1) 

2.02(-1) 
2.07(-1) 

1.73(-1) 
1.40(- 1) 

8.13(-2) 
3.7 1 (- 2) 

9.38(-3) 
2.49(-4) 

9.5 8(-7) 

2.32(-1) 

2.26(-1) 

2.20(- 1) 

2.14(-1) 

1.79(--1) 
1.43(-1) 

8.17(-2) 
3.71(-2) 

9.38(-3) 

2.49(-4) 

9.58(-7) 

2.39(-1) 

2.31(-1) 

2.24(-1) 
2.18(-1) 

1.80(-1) 
1.44(-1) 

8.17(-2) 

3.7 1(-2) 

9.38(-3) 

2.49(-4) 

9.58(-7) 

eRead: 1.58 X etc. 
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Appendix 35. Graphs of the Q Function 

Useful functions in calculating the shield penetra- 
tion of secondary gamma-ray fluxes are the G func- 
tions defined in Section 3.10. The G o  function is 
used to calculate the uncollided flux, and the GH 
function (n  > 0) is used for the collided flux. 3J.10. 

Values of these functions have been obtained by 
Trubey6 and Schmidt* for the case of a slab shield 
and by Claiborne141 for the case of a semi-infinite 
shield. ' h e  functions are plotted in Figs. 35.1 through 
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Fig. 35.1. The Function qowt,ct) for a'Slab Shield (Linear Plot, (Y= 0 to 3.0). (From ref. 67.) 
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ORNL- DWG 69- 508 

Fig. 3J.2. The Function @o@t,~) for a Slab Shield (Semilog 
Plot, a= 1.0 to 3.0.) (From ref. 214.) 
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Fig. 35.3. The Function *o(J.lt,c~) for a Slab Shield (Semilog 
Plot, CY= 0.3 to 1.0). (From ref. 214.) 
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Fig. 3J.4. The Function *,W,d) for a Slab Shield (Linear Plot, d = 0 to 3.0). (From ref. 67.) 
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Fig. 35.5. The Function W,(Y) for a Slab Shield (Semilog 
Plot, (Y = 0.3 to 1.0). (From ref. 214.) 
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Plot, (Y= 1.0 to 3.0). (From ref. 214.) 
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Fig. 35.10. The Function *3(pt,a) for a Semi-Infinite Shield. (From ref. 141.) 
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